File size: 2,825 Bytes
d06a97f
 
 
 
 
 
 
 
 
 
 
 
7a16f9f
d06a97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a16f9f
d06a97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small Hindi - Rishabh Mathur
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: hi
      split: test
      args: 'config: hi, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 35.90811802476686
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Hi - Rishabh Mathur

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3956
- WER: 35.9081

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 390
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.7731        | 0.9708  | 27   | 0.5895          | 60.3386 |
| 0.4964        | 1.9775  | 55   | 0.4101          | 45.7155 |
| 0.2613        | 2.9843  | 83   | 0.3411          | 40.6360 |
| 0.2032        | 3.9910  | 111  | 0.3155          | 37.3949 |
| 0.1622        | 4.9978  | 139  | 0.3081          | 36.0648 |
| 0.1001        | 5.9685  | 166  | 0.3126          | 35.4418 |
| 0.0826        | 6.9753  | 194  | 0.3265          | 35.4762 |
| 0.0541        | 7.9820  | 222  | 0.3401          | 35.3348 |
| 0.0418        | 8.9888  | 250  | 0.3528          | 35.3921 |
| 0.035         | 9.9955  | 278  | 0.3668          | 35.4380 |
| 0.0245        | 10.9663 | 305  | 0.3783          | 35.6291 |
| 0.0212        | 11.9730 | 333  | 0.3880          | 36.0304 |
| 0.0172        | 12.9798 | 361  | 0.3942          | 35.8240 |
| 0.0159        | 13.9865 | 389  | 0.3956          | 35.9158 |
| 0.0159        | 14.0225 | 390  | 0.3956          | 35.9081 |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1