RichardErkhov commited on
Commit
2a3aa9b
·
verified ·
1 Parent(s): 4055b40

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Llama-2-7b-dolphin-open_platypus - bnb 4bits
11
+ - Model creator: https://huggingface.co/neuralmagic/
12
+ - Original model: https://huggingface.co/neuralmagic/Llama-2-7b-dolphin-open_platypus/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ base_model: meta-llama/Llama-2-7b-hf
20
+ inference: true
21
+ model_type: llama
22
+ pipeline_tag: text-generation
23
+ datasets:
24
+ - garage-bAInd/Open-Platypus
25
+ - Open-Orca/OpenOrca
26
+ - cognitivecomputations/dolphin
27
+ tags:
28
+ - instruct
29
+ ---
30
+
31
+ # Llama-2-7b-instruct
32
+
33
+ This repo contains a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) finetuned for instruction-following tasks using a blend of the Platypus + Open Orca + Dolphin datasets.
34
+
35
+ Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).
36
+
37
+ **Authors**: Neural Magic, Cerebras
38
+
39
+ ## Usage
40
+
41
+ Below we share some code snippets on how to get quickly started with running the model.
42
+
43
+ ### Sparse Transfer
44
+
45
+ By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
46
+
47
+ ### Running the model
48
+
49
+ This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
50
+
51
+ ```python
52
+ # pip install transformers accelerate
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-instruct")
56
+ model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-instruct", device_map="auto")
57
+
58
+ input_text = "Write a recipe for banana bread:\n"
59
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
60
+
61
+ outputs = model.generate(**input_ids)
62
+ print(tokenizer.decode(outputs[0]))
63
+ ```
64
+
65
+ ## Evaluation Benchmark Results
66
+
67
+ Model evaluation metrics and results.
68
+
69
+ | Benchmark | Metric | Llama-2-7b-instruct | Llama-2-7b-pruned50-retrained-instruct |
70
+ |------------------------------------------------|---------------|-------------|-------------------------------|
71
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | xxxx | xxxx |
72
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | xxxx | xxxx |
73
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | xxxx | xxxx |
74
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | | xxxx | xxxx |
75
+ | [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | xxxx | xxxx |
76
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
77
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | xxxx | xxxx |
78
+
79
+ ## Model Training Details
80
+
81
+ Coming soon.
82
+
83
+ ## Help
84
+
85
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
86
+