File size: 9,062 Bytes
406a7d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
zephyr-7b-beta_sparse05 - GGUF
- Model creator: https://huggingface.co/kettleguts/
- Original model: https://huggingface.co/kettleguts/zephyr-7b-beta_sparse05/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [zephyr-7b-beta_sparse05.Q2_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q2_K.gguf) | Q2_K | 2.53GB |
| [zephyr-7b-beta_sparse05.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [zephyr-7b-beta_sparse05.IQ3_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [zephyr-7b-beta_sparse05.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [zephyr-7b-beta_sparse05.IQ3_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [zephyr-7b-beta_sparse05.Q3_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K.gguf) | Q3_K | 3.28GB |
| [zephyr-7b-beta_sparse05.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [zephyr-7b-beta_sparse05.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [zephyr-7b-beta_sparse05.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [zephyr-7b-beta_sparse05.Q4_0.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_0.gguf) | Q4_0 | 3.83GB |
| [zephyr-7b-beta_sparse05.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [zephyr-7b-beta_sparse05.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [zephyr-7b-beta_sparse05.Q4_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_K.gguf) | Q4_K | 4.07GB |
| [zephyr-7b-beta_sparse05.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [zephyr-7b-beta_sparse05.Q4_1.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q4_1.gguf) | Q4_1 | 4.24GB |
| [zephyr-7b-beta_sparse05.Q5_0.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_0.gguf) | Q5_0 | 4.65GB |
| [zephyr-7b-beta_sparse05.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [zephyr-7b-beta_sparse05.Q5_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_K.gguf) | Q5_K | 4.78GB |
| [zephyr-7b-beta_sparse05.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [zephyr-7b-beta_sparse05.Q5_1.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q5_1.gguf) | Q5_1 | 5.07GB |
| [zephyr-7b-beta_sparse05.Q6_K.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q6_K.gguf) | Q6_K | 5.53GB |
| [zephyr-7b-beta_sparse05.Q8_0.gguf](https://huggingface.co/RichardErkhov/kettleguts_-_zephyr-7b-beta_sparse05-gguf/blob/main/zephyr-7b-beta_sparse05.Q8_0.gguf) | Q8_0 | 7.17GB |
Original model description:
---
library_name: transformers
tags:
- mistral
- sparse
- pruned
- wanda
license: mit
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
---
# Model Card for kettleguts/zephyr-7b-beta_sparse05
This is a pruned version of HuggingFaceH4/zephyr-7b-beta found [here](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). Wanda pruning was used to introduce 50% sparsity into the linear layers. Read the paper [here](https://arxiv.org/abs/2306.11695).
### Model Description
[Here](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta#model-description)
## Uses
This model is only useful for research purposes. The quality of its text generation is highly dependent on how it is prompted. Since it is heavily pruned, it sometimes behaves like a mush smaller model.
### Direct Use
This model is not suitable for direct use outside of research.
# Out-of-Scope Use
This model should never be used for critical decisions involving health, life, employment, housing, law, etc. It should also never be used to harm anyone.
## Bias, Risks, and Limitations
[No safegaurds have been added to this model.](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta#bias-risks-and-limitations)
## How to Get Started with the Model
Use the code below to get started with the model:
<blockquote>
```Python
from transformers import pipeline
pipe = pipeline("text-generation",model=model, tokenizer=tokenizer)
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds as briefly as possible with prefect grammar.",
},
{"role": "user", "content": "Briefly describe network pruning."},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
pad_token_id = tokenizer.pad_token_id)
text = str(outputs[0]).split('<|assistant|>\\n')
print(text[-1])
```
</blockquote>
Output:
>Network pruning, in the context of artificial intelligence and machine learning, refers to the process of removing unimportant or redundant connections, or "pruning," from a neural network\'s architecture. This is done to simplify and optimize the network\'s structure, reduce overfitting, and improve its efficiency, while preserving its overall performance. Pruning typically involves removing connections, neurons, or entire layers, based on metrics such as the weight or sparsity of the connection, or the amount of improvement gained by removing the connection. The goal is to prune the network in a way that balances the trade-off between model size and accuracy, while reducing the network\'s overall complexity and resource requirements. Pruning techniques can range from simple heuristics such as early stopping, to more sophisticated methods such as compressed and pruned models, and iterative and incremental pruning.'}
## Evaluation
Pending
## Model Examination
<!-- Relevant interpretability work for the model goes here -->
Pending
## Environmental Impact
The calculations necessary to prune this model required less than 1 hour of time on a T4 GPU in Colab.
## Technical Specifications
#### Software
The bulk of this work was done using [Pytorch](https://pytorch.org/). They have an array of built-in [pruning tools](https://pytorch.org/docs/stable/nn.html#:~:text=Utility%20classes%20and%20functions%20for%20pruning%20Module%20parameters
) in torch.nn . Also check out the [tutorial](https://pytorch.org/tutorials/intermediate/pruning_tutorial.html) by [Michela Paganini](https://github.com/mickypaganini).
## Citation
**BibTeX:**
<code>
>@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
>@misc{sun2023simple,
title={A Simple and Effective Pruning Approach for Large Language Models},
author={Mingjie Sun and Zhuang Liu and Anna Bair and J. Zico Kolter},
year={2023},
eprint={2306.11695},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
</code>
|