Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) ValueLlama-3-8B - GGUF - Model creator: https://huggingface.co/Value4AI/ - Original model: https://huggingface.co/Value4AI/ValueLlama-3-8B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [ValueLlama-3-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q2_K.gguf) | Q2_K | 2.96GB | | [ValueLlama-3-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [ValueLlama-3-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_S.gguf) | IQ3_S | 3.43GB | | [ValueLlama-3-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [ValueLlama-3-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_M.gguf) | IQ3_M | 3.52GB | | [ValueLlama-3-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K.gguf) | Q3_K | 3.74GB | | [ValueLlama-3-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [ValueLlama-3-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [ValueLlama-3-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [ValueLlama-3-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_0.gguf) | Q4_0 | 4.34GB | | [ValueLlama-3-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [ValueLlama-3-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [ValueLlama-3-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K.gguf) | Q4_K | 4.58GB | | [ValueLlama-3-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [ValueLlama-3-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_1.gguf) | Q4_1 | 4.78GB | | [ValueLlama-3-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_0.gguf) | Q5_0 | 5.21GB | | [ValueLlama-3-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [ValueLlama-3-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K.gguf) | Q5_K | 5.34GB | | [ValueLlama-3-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [ValueLlama-3-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_1.gguf) | Q5_1 | 5.65GB | | [ValueLlama-3-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q6_K.gguf) | Q6_K | 6.14GB | | [ValueLlama-3-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- library_name: transformers tags: - llama-factory license: llama3 datasets: - allenai/ValuePrism - Value4AI/ValueBench language: - en --- # Model Card for ValueLlama ## Model Description ValueLlama is designed for perception-level value measurement in an open-ended value space, which includes two tasks: (1) Relevance classification determines whether a perception is relevant to a value; and (2) Valence classification determines whether a perception supports, opposes, or remains neutral (context-dependent) towards a value. Both tasks are formulated as generating a label given a value and a perception. - **Model type:** Language model - **Language(s) (NLP):** en - **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) ## Paper For more information, please refer to our paper: [*Measuring Human and AI Values based on Generative Psychometrics with Large Language Models*](https://arxiv.org/abs/2409.12106). ## Uses It is intended for use in **research** to measure human/AI values and conduct related analyses. See our codebase for more details: [https://github.com/Value4AI/gpv](https://github.com/Value4AI/gpv). ## BibTeX: If you find this model helpful, we would appreciate it if you cite our paper: ```bibtex @misc{ye2024gpv, title={Measuring Human and AI Values based on Generative Psychometrics with Large Language Models}, author={Haoran Ye and Yuhang Xie and Yuanyi Ren and Hanjun Fang and Xin Zhang and Guojie Song}, year={2024}, eprint={2409.12106}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.12106}, } ```