File size: 5,571 Bytes
f43452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
ValueLlama-3-8B - GGUF
- Model creator: https://huggingface.co/Value4AI/
- Original model: https://huggingface.co/Value4AI/ValueLlama-3-8B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [ValueLlama-3-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q2_K.gguf) | Q2_K | 2.96GB |
| [ValueLlama-3-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
| [ValueLlama-3-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_S.gguf) | IQ3_S | 3.43GB |
| [ValueLlama-3-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
| [ValueLlama-3-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_M.gguf) | IQ3_M | 3.52GB |
| [ValueLlama-3-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K.gguf) | Q3_K | 3.74GB |
| [ValueLlama-3-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
| [ValueLlama-3-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
| [ValueLlama-3-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
| [ValueLlama-3-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_0.gguf) | Q4_0 | 4.34GB |
| [ValueLlama-3-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
| [ValueLlama-3-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
| [ValueLlama-3-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K.gguf) | Q4_K | 4.58GB |
| [ValueLlama-3-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
| [ValueLlama-3-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_1.gguf) | Q4_1 | 4.78GB |
| [ValueLlama-3-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_0.gguf) | Q5_0 | 5.21GB |
| [ValueLlama-3-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
| [ValueLlama-3-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K.gguf) | Q5_K | 5.34GB |
| [ValueLlama-3-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
| [ValueLlama-3-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_1.gguf) | Q5_1 | 5.65GB |
| [ValueLlama-3-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q6_K.gguf) | Q6_K | 6.14GB |
| [ValueLlama-3-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q8_0.gguf) | Q8_0 | 7.95GB |
Original model description:
---
library_name: transformers
tags:
- llama-factory
license: llama3
datasets:
- allenai/ValuePrism
- Value4AI/ValueBench
language:
- en
---
# Model Card for ValueLlama
## Model Description
ValueLlama is designed for perception-level value measurement in an open-ended value space, which includes two tasks: (1) Relevance classification determines whether a perception is relevant to a value; and (2) Valence classification determines whether a perception supports, opposes, or remains neutral (context-dependent) towards a value. Both tasks are formulated as generating a label given a value and a perception.
- **Model type:** Language model
- **Language(s) (NLP):** en
- **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
## Paper
For more information, please refer to our paper: [*Measuring Human and AI Values based on Generative Psychometrics with Large Language Models*](https://arxiv.org/abs/2409.12106).
## Uses
It is intended for use in **research** to measure human/AI values and conduct related analyses.
See our codebase for more details: [https://github.com/Value4AI/gpv](https://github.com/Value4AI/gpv).
## BibTeX:
If you find this model helpful, we would appreciate it if you cite our paper:
```bibtex
@misc{ye2024gpv,
title={Measuring Human and AI Values based on Generative Psychometrics with Large Language Models},
author={Haoran Ye and Yuhang Xie and Yuanyi Ren and Hanjun Fang and Xin Zhang and Guojie Song},
year={2024},
eprint={2409.12106},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.12106},
}
```
|