uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Mistral7B-PairRM-SPPO-Iter2 - GGUF
|
11 |
+
- Model creator: https://huggingface.co/UCLA-AGI/
|
12 |
+
- Original model: https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q2_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q2_K.gguf) | Q2_K | 2.53GB |
|
18 |
+
| [Mistral7B-PairRM-SPPO-Iter2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
|
19 |
+
| [Mistral7B-PairRM-SPPO-Iter2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.IQ3_S.gguf) | IQ3_S | 2.96GB |
|
20 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
|
21 |
+
| [Mistral7B-PairRM-SPPO-Iter2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.IQ3_M.gguf) | IQ3_M | 3.06GB |
|
22 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q3_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q3_K.gguf) | Q3_K | 3.28GB |
|
23 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
|
24 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
|
25 |
+
| [Mistral7B-PairRM-SPPO-Iter2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
|
26 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q4_0.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q4_0.gguf) | Q4_0 | 3.83GB |
|
27 |
+
| [Mistral7B-PairRM-SPPO-Iter2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
|
28 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
|
29 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q4_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q4_K.gguf) | Q4_K | 4.07GB |
|
30 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
|
31 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q4_1.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q4_1.gguf) | Q4_1 | 4.24GB |
|
32 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q5_0.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q5_0.gguf) | Q5_0 | 4.65GB |
|
33 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
|
34 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q5_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q5_K.gguf) | Q5_K | 4.78GB |
|
35 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
|
36 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q5_1.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q5_1.gguf) | Q5_1 | 5.07GB |
|
37 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q6_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q6_K.gguf) | Q6_K | 5.53GB |
|
38 |
+
| [Mistral7B-PairRM-SPPO-Iter2.Q8_0.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Mistral7B-PairRM-SPPO-Iter2-gguf/blob/main/Mistral7B-PairRM-SPPO-Iter2.Q8_0.gguf) | Q8_0 | 7.17GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: apache-2.0
|
46 |
+
datasets:
|
47 |
+
- openbmb/UltraFeedback
|
48 |
+
language:
|
49 |
+
- en
|
50 |
+
pipeline_tag: text-generation
|
51 |
+
---
|
52 |
+
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
|
53 |
+
|
54 |
+
# Mistral7B-PairRM-SPPO-Iter2
|
55 |
+
|
56 |
+
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 2, based on the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
|
57 |
+
|
58 |
+
**This is the model reported in the paper** , with K=5 (generate 5 responses per iteration). We attached the Arena-Hard eval results in this model page.
|
59 |
+
|
60 |
+
## Links to Other Models
|
61 |
+
- [Mistral7B-PairRM-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter1)
|
62 |
+
- [Mistral7B-PairRM-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2)
|
63 |
+
- [Mistral7B-PairRM-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3)
|
64 |
+
- [Mistral7B-PairRM-SPPO](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO)
|
65 |
+
|
66 |
+
|
67 |
+
### Model Description
|
68 |
+
|
69 |
+
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
|
70 |
+
- Language(s) (NLP): Primarily English
|
71 |
+
- License: Apache-2.0
|
72 |
+
- Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
|
73 |
+
|
74 |
+
|
75 |
+
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
|
76 |
+
|
77 |
+
|
78 |
+
| Model | LC. Win Rate | Win Rate | Avg. Length |
|
79 |
+
|-------------------------------------------|:------------:|:--------:|:-----------:|
|
80 |
+
| Mistral7B-PairRM-SPPO Iter 1 | 24.79 | 23.51 | 1855 |
|
81 |
+
| Mistral7B-PairRM-SPPO Iter 2 | 26.89 | 27.62 | 2019 |
|
82 |
+
| Mistral7B-PairRM-SPPO Iter 3 | 28.53 | 31.02 | 2163 |
|
83 |
+
| Mistral7B-PairRM-SPPO Iter 1 (best-of-16) | 28.71 | 27.77 | 1901 |
|
84 |
+
| Mistral7B-PairRM-SPPO Iter 2 (best-of-16) | 31.23 | 32.12 | 2035 |
|
85 |
+
| Mistral7B-PairRM-SPPO Iter 3 (best-of-16) | 32.13 | 34.94 | 2174 |
|
86 |
+
## [Arena-Hard Evaluation Results](https://github.com/lm-sys/arena-hard)
|
87 |
+
|
88 |
+
Model | Score | 95% CI | average \# Tokens |
|
89 |
+
|----------|-----------|--------------|-----------|
|
90 |
+
Mistral7B-PairRM-SPPO-Iter3| 23.3 | (-1.8, 1.8)|578|
|
91 |
+
|
92 |
+
## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness)
|
93 |
+
|
94 |
+
Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1
|
95 |
+
|
96 |
+
| | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average |
|
97 |
+
|--------|---------------|----------------|------------|-------|-----------|-------|---------|
|
98 |
+
| Mistral7B-PairRM-SPPO Iter 1 | 65.02 | 69.4 | 77.82 | 43.82 | 85.11 | 58.84 | 66.67 |
|
99 |
+
| Mistral7B-PairRM-SPPO Iter 2 | 65.53 | 69.55 | 77.03 | 44.35 | 85.29 | 58.72 | 66.75 |
|
100 |
+
| Mistral7B-PairRM-SPPO Iter 3 | 65.36 | 69.97 | 76.8 | 42.68 | 85.16 | 58.45 | 66.4 |
|
101 |
+
## [MT-Bench Evaluation Results](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)
|
102 |
+
|
103 |
+
| | 1st Turn | 2nd Turn | Average |
|
104 |
+
|--------|----------|----------|---------|
|
105 |
+
| Mistral7B-PairRM-SPPO Iter 1 | 7.63 | 6.79 | 7.21 |
|
106 |
+
| Mistral7B-PairRM-SPPO Iter 2 | 7.90 | 7.08 | 7.49 |
|
107 |
+
| Mistral7B-PairRM-SPPO Iter 3 | 7.84 | 7.34 | 7.59 |
|
108 |
+
|
109 |
+
### Training hyperparameters
|
110 |
+
The following hyperparameters were used during training:
|
111 |
+
|
112 |
+
- learning_rate: 5e-07
|
113 |
+
- eta: 1000
|
114 |
+
- per_device_train_batch_size: 8
|
115 |
+
- gradient_accumulation_steps: 1
|
116 |
+
- seed: 42
|
117 |
+
- distributed_type: deepspeed_zero3
|
118 |
+
- num_devices: 8
|
119 |
+
- optimizer: RMSProp
|
120 |
+
- lr_scheduler_type: linear
|
121 |
+
- lr_scheduler_warmup_ratio: 0.1
|
122 |
+
- num_train_epochs: 18.0 (stop at epoch=1.0)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
## Citation
|
128 |
+
```
|
129 |
+
@misc{wu2024self,
|
130 |
+
title={Self-Play Preference Optimization for Language Model Alignment},
|
131 |
+
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
|
132 |
+
year={2024},
|
133 |
+
eprint={2405.00675},
|
134 |
+
archivePrefix={arXiv},
|
135 |
+
primaryClass={cs.LG}
|
136 |
+
}
|
137 |
+
```
|
138 |
+
|