uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Gemma-2-9B-It-SPPO-Iter2 - GGUF
|
11 |
+
- Model creator: https://huggingface.co/UCLA-AGI/
|
12 |
+
- Original model: https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q2_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q2_K.gguf) | Q2_K | 3.54GB |
|
18 |
+
| [Gemma-2-9B-It-SPPO-Iter2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.IQ3_XS.gguf) | IQ3_XS | 3.86GB |
|
19 |
+
| [Gemma-2-9B-It-SPPO-Iter2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.IQ3_S.gguf) | IQ3_S | 4.04GB |
|
20 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q3_K_S.gguf) | Q3_K_S | 4.04GB |
|
21 |
+
| [Gemma-2-9B-It-SPPO-Iter2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.IQ3_M.gguf) | IQ3_M | 4.19GB |
|
22 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q3_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q3_K.gguf) | Q3_K | 4.43GB |
|
23 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q3_K_M.gguf) | Q3_K_M | 4.43GB |
|
24 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q3_K_L.gguf) | Q3_K_L | 4.78GB |
|
25 |
+
| [Gemma-2-9B-It-SPPO-Iter2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.IQ4_XS.gguf) | IQ4_XS | 4.86GB |
|
26 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q4_0.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q4_0.gguf) | Q4_0 | 5.07GB |
|
27 |
+
| [Gemma-2-9B-It-SPPO-Iter2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.IQ4_NL.gguf) | IQ4_NL | 5.1GB |
|
28 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q4_K_S.gguf) | Q4_K_S | 5.1GB |
|
29 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q4_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q4_K.gguf) | Q4_K | 5.37GB |
|
30 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q4_K_M.gguf) | Q4_K_M | 5.37GB |
|
31 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q4_1.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q4_1.gguf) | Q4_1 | 5.55GB |
|
32 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q5_0.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q5_0.gguf) | Q5_0 | 6.04GB |
|
33 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q5_K_S.gguf) | Q5_K_S | 6.04GB |
|
34 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q5_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q5_K.gguf) | Q5_K | 6.19GB |
|
35 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q5_K_M.gguf) | Q5_K_M | 6.19GB |
|
36 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q5_1.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q5_1.gguf) | Q5_1 | 6.52GB |
|
37 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q6_K.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q6_K.gguf) | Q6_K | 7.07GB |
|
38 |
+
| [Gemma-2-9B-It-SPPO-Iter2.Q8_0.gguf](https://huggingface.co/RichardErkhov/UCLA-AGI_-_Gemma-2-9B-It-SPPO-Iter2-gguf/blob/main/Gemma-2-9B-It-SPPO-Iter2.Q8_0.gguf) | Q8_0 | 9.15GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: gemma
|
46 |
+
datasets:
|
47 |
+
- openbmb/UltraFeedback
|
48 |
+
language:
|
49 |
+
- en
|
50 |
+
pipeline_tag: text-generation
|
51 |
+
---
|
52 |
+
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
|
53 |
+
|
54 |
+
# Gemma-2-9B-It-SPPO-Iter2
|
55 |
+
|
56 |
+
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 2, based on the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
|
57 |
+
|
58 |
+
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)
|
59 |
+
|
60 |
+
|
61 |
+
## Links to Other Models
|
62 |
+
- [Gemma-2-9B-It-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1)
|
63 |
+
- [Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2)
|
64 |
+
- [Gemma-2-9B-It-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3)
|
65 |
+
|
66 |
+
### Model Description
|
67 |
+
|
68 |
+
- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
|
69 |
+
- Language(s) (NLP): Primarily English
|
70 |
+
- License: Apache-2.0
|
71 |
+
- Finetuned from model: google/gemma-2-9b-it
|
72 |
+
|
73 |
+
|
74 |
+
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
|
75 |
+
|
76 |
+
|
77 |
+
| Model | LC. Win Rate | Win Rate | Avg. Length |
|
78 |
+
|-------------------------------------------|:------------:|:--------:|:-----------:|
|
79 |
+
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1) |48.70 |40.76 | 1669
|
80 |
+
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) |50.93 | 44.64 | 1759
|
81 |
+
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) |**53.27** |**47.74** | 1803
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
### Training hyperparameters
|
89 |
+
The following hyperparameters were used during training:
|
90 |
+
|
91 |
+
- learning_rate: 5e-07
|
92 |
+
- eta: 1000
|
93 |
+
- per_device_train_batch_size: 8
|
94 |
+
- gradient_accumulation_steps: 1
|
95 |
+
- seed: 42
|
96 |
+
- distributed_type: deepspeed_zero3
|
97 |
+
- num_devices: 8
|
98 |
+
- optimizer: RMSProp
|
99 |
+
- lr_scheduler_type: linear
|
100 |
+
- lr_scheduler_warmup_ratio: 0.1
|
101 |
+
- num_train_epochs: 1.0
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
## Citation
|
107 |
+
```
|
108 |
+
@misc{wu2024self,
|
109 |
+
title={Self-Play Preference Optimization for Language Model Alignment},
|
110 |
+
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
|
111 |
+
year={2024},
|
112 |
+
eprint={2405.00675},
|
113 |
+
archivePrefix={arXiv},
|
114 |
+
primaryClass={cs.LG}
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
|
119 |
+
|