File size: 8,684 Bytes
a40d6a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
TableLLM-7b - GGUF
- Model creator: https://huggingface.co/RUCKBReasoning/
- Original model: https://huggingface.co/RUCKBReasoning/TableLLM-7b/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [TableLLM-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q2_K.gguf) | Q2_K | 2.36GB |
| [TableLLM-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [TableLLM-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.IQ3_S.gguf) | IQ3_S | 0.38GB |
| [TableLLM-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [TableLLM-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [TableLLM-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q3_K.gguf) | Q3_K | 3.07GB |
| [TableLLM-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [TableLLM-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [TableLLM-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [TableLLM-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q4_0.gguf) | Q4_0 | 3.56GB |
| [TableLLM-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [TableLLM-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [TableLLM-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q4_K.gguf) | Q4_K | 3.8GB |
| [TableLLM-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [TableLLM-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q4_1.gguf) | Q4_1 | 3.95GB |
| [TableLLM-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q5_0.gguf) | Q5_0 | 4.33GB |
| [TableLLM-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [TableLLM-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q5_K.gguf) | Q5_K | 4.45GB |
| [TableLLM-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [TableLLM-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q5_1.gguf) | Q5_1 | 4.72GB |
| [TableLLM-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q6_K.gguf) | Q6_K | 5.15GB |
| [TableLLM-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/RUCKBReasoning_-_TableLLM-7b-gguf/blob/main/TableLLM-7b.Q8_0.gguf) | Q8_0 | 6.67GB |
Original model description:
---
license: llama2
datasets:
- RUCKBReasoning/TableLLM-SFT
language:
- en
tags:
- Table
- QA
- Code
---
# TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
| **[Paper](https://arxiv.org/abs/2403.19318)** | **[Training set](https://huggingface.co/datasets/RUCKBReasoning/TableLLM-SFT)** | **[Github](https://github.com/RUCKBReasoning/TableLLM)** | **[Homepage](https://tablellm.github.io/)** |
We present **TableLLM**, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: [TableLLM-7B](https://huggingface.co/RUCKBReasoning/TableLLM-7b) and [TableLLM-13B](https://huggingface.co/RUCKBReasoning/TableLLM-13b), which are fine-tuned based on CodeLlama-7B and 13B.
TableLLM generates either a code solution or a direct text answer to handle tabular data manipulation tasks based on different scenarios. Code generation is used for handling spreadsheet-embedded tabular data, which often involves the insert, delete, update, query, merge, and plot operations of tables. Text generation is used for handling document-embedded tabular data, which often involves the query operation of short tables.
## Evaluation Results
We evaluate the code solution generation ability of TableLLM on three benchmarks: WikiSQL, Spider and Self-created table operation benchmark. The text answer generation ability is tested on four benchmarks: WikiTableQuestion (WikiTQ), TAT-QA, FeTaQA and OTTQA. The evaluation result is shown below:
| Model | WikiTQ | TAT-QA | FeTaQA | OTTQA | WikiSQL | Spider | Self-created | Average |
| :------------------- | :----: | :----: | :----: | :-----: | :-----: | :----: | :----------: | :-----: |
| TaPEX | 38.5 | β | β | β | 83.9 | 15.0 | / | 45.8 |
| TaPas | 31.5 | β | β | β | 74.2 | 23.1 | / | 42.92 |
| TableLlama | 24.0 | 22.2 | 20.5 | 6.4 | 43.7 | 9.0 | / | 20.7 |
| GPT3.5 | 58.5 |<ins>72.1</ins>| 71.2 | 60.8 | 81.7 | 67.4 | 77.1 | 69.8 |
| GPT4 |**74.1**|**77.1**|**78.4**|**69.5** | 84.0 | 69.5 | 77.8 | **75.8**|
| Llama2-Chat (13B) | 48.8 | 49.6 | 67.7 | 61.5 | β | β | β | 56.9 |
| CodeLlama (13B) | 43.4 | 47.2 | 57.2 | 49.7 | 38.3 | 21.9 | 47.6 | 43.6 |
| Deepseek-Coder (33B) | 6.5 | 11.0 | 7.1 | 7.4 | 72.5 | 58.4 | 73.9 | 33.8 |
| StructGPT (GPT3.5) | 52.5 | 27.5 | 11.8 | 14.0 | 67.8 |**84.8**| / | 48.9 |
| Binder (GPT3.5) | 61.6 | 12.8 | 6.8 | 5.1 | 78.6 | 52.6 | / | 42.5 |
| DATER (GPT3.5) | 53.4 | 28.4 | 18.3 | 13.0 | 58.2 | 26.5 | / | 37.0 |
| TableLLM-7B (Ours) | 58.8 | 66.9 | 72.6 |<ins>63.1</ins>|<ins>86.6</ins>| 82.6 |<ins>78.8</ins>| 72.8 |
| TableLLM-13B (Ours) |<ins>62.4</ins>| 68.2 |<ins>74.5</ins>| 62.5 | **90.7**|<ins>83.4</ins>| **80.8** |<ins>74.7</ins>|
## Prompt Template
The prompts we used for generating code solutions and text answers are introduced below.
### Code Solution
The prompt template for the insert, delete, update, query, and plot operations on a single table.
```
[INST]Below are the first few lines of a CSV file. You need to write a Python program to solve the provided question.
Header and first few lines of CSV file:
{csv_data}
Question: {question}[/INST]
```
The prompt template for the merge operation on two tables.
```
[INST]Below are the first few lines two CSV file. You need to write a Python program to solve the provided question.
Header and first few lines of CSV file 1:
{csv_data1}
Header and first few lines of CSV file 2:
{csv_data2}
Question: {question}[/INST]
```
The csv_data field is filled with the first few lines of your provided table file. Below is an example:
```
Sex,Length,Diameter,Height,Whole weight,Shucked weight,Viscera weight,Shell weight,Rings
M,0.455,0.365,0.095,0.514,0.2245,0.101,0.15,15
M,0.35,0.265,0.09,0.2255,0.0995,0.0485,0.07,7
F,0.53,0.42,0.135,0.677,0.2565,0.1415,0.21,9
M,0.44,0.365,0.125,0.516,0.2155,0.114,0.155,10
I,0.33,0.255,0.08,0.205,0.0895,0.0395,0.055,7
```
### Text Answer
The prompt template for direct text answer generation on short tables.
````
[INST]Offer a thorough and accurate solution that directly addresses the Question outlined in the [Question].
### [Table Text]
{table_descriptions}
### [Table]
```
{table_in_csv}
```
### [Question]
{question}
### [Solution][INST/]
````
For more details about how to use TableLLM, please refer to our GitHub page: <https://github.com/TableLLM/TableLLM>
|