uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Themis - GGUF
|
11 |
+
- Model creator: https://huggingface.co/PKU-ONELab/
|
12 |
+
- Original model: https://huggingface.co/PKU-ONELab/Themis/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Themis.Q2_K.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q2_K.gguf) | Q2_K | 2.96GB |
|
18 |
+
| [Themis.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
|
19 |
+
| [Themis.Q3_K.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q3_K.gguf) | Q3_K | 3.74GB |
|
20 |
+
| [Themis.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
|
21 |
+
| [Themis.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
|
22 |
+
| [Themis.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
|
23 |
+
| [Themis.Q4_0.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q4_0.gguf) | Q4_0 | 4.34GB |
|
24 |
+
| [Themis.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
|
25 |
+
| [Themis.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
|
26 |
+
| [Themis.Q4_K.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q4_K.gguf) | Q4_K | 4.58GB |
|
27 |
+
| [Themis.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
|
28 |
+
| [Themis.Q4_1.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q4_1.gguf) | Q4_1 | 4.78GB |
|
29 |
+
| [Themis.Q5_0.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q5_0.gguf) | Q5_0 | 5.21GB |
|
30 |
+
| [Themis.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
|
31 |
+
| [Themis.Q5_K.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q5_K.gguf) | Q5_K | 5.34GB |
|
32 |
+
| [Themis.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
|
33 |
+
| [Themis.Q5_1.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q5_1.gguf) | Q5_1 | 5.65GB |
|
34 |
+
| [Themis.Q6_K.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q6_K.gguf) | Q6_K | 6.14GB |
|
35 |
+
| [Themis.Q8_0.gguf](https://huggingface.co/RichardErkhov/PKU-ONELab_-_Themis-gguf/blob/main/Themis.Q8_0.gguf) | Q8_0 | 7.95GB |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
Original model description:
|
41 |
+
---
|
42 |
+
license: apache-2.0
|
43 |
+
---
|
44 |
+
# Themis
|
45 |
+
|
46 |
+
Paper: https://arxiv.org/abs/2406.18365
|
47 |
+
|
48 |
+
Github: https://github.com/PKU-ONELab/Themis
|
49 |
+
|
50 |
+
## Introduction
|
51 |
+
|
52 |
+
We propose **Themis**, an 8B-parameter large language model (LLM) specifically designed and trained for NLG evaluation with more comprehensive capabilities.
|
53 |
+
|
54 |
+
Our Themis can evaluate various NLG tasks, including uncommon ones like question-answering evaluation (**Versatility**), in a reference-free manner (**Independence**). Moreover, it allows for specific and customized evaluation aspects and criteria, including overall quality and more fine-grained aspects (**Flexibility**), and its evaluation contains corresponding analysis and explanation together with the rating (**Interpretability**).
|
55 |
+
|
56 |
+
We believe that an ideal evaluator should be convenient to use and possess these characteristics. The comparison between related methods and Themis is shown in the table below.
|
57 |
+
|
58 |
+
| Method | Versatility | Independence | Flexibility | Interpretability | Open-source |
|
59 |
+
| :---------------: | :---------: | :----------: | :---------: | :--------------: | :---------: |
|
60 |
+
| UniEval | β | β | βοΈ | β | βοΈ |
|
61 |
+
| G-Eval | βοΈ | βοΈ | βοΈ | βοΈ | β |
|
62 |
+
| X-Eval | βοΈ | β | βοΈ | β | β |
|
63 |
+
| Prometheus | βοΈ | β | βοΈ | βοΈ | βοΈ |
|
64 |
+
| Auto-J | βοΈ | βοΈ | β | βοΈ | βοΈ |
|
65 |
+
| InstructScore | βοΈ | β | β | βοΈ | βοΈ |
|
66 |
+
| TIGERScore | βοΈ | βοΈ | β | βοΈ | βοΈ |
|
67 |
+
| **Themis (Ours)** | βοΈ | βοΈ | βοΈ | βοΈ | βοΈ |
|
68 |
+
|
69 |
+
## Performance
|
70 |
+
|
71 |
+
We implement experiments on several common NLG evaluation tasks and datasets to compare our Themis with other methods, including SummEval for summarization, Topical-Chat for dialogue response generation, SFRES&SFHOT for data-to-text, QAGS for factuality, MANS for story generation, and WMT23 zh-en for machine translation. Experimental results show that our Themis achieves better overall evaluation performance over other evaluation models, including GPT-4.
|
72 |
+
|
73 |
+
| Method | SummEval | Topical-Chat | SFHOT& SFRES | QAGS | MANS | WMT23 | Average Spearman |
|
74 |
+
| -------------------- | :-------: | :----------: | :---------: | :-------: | :-------: | :-------: | :------------: |
|
75 |
+
| BLEU | 0.075 | 0.388 | 0.024 | - | 0.032 | 0.021 | - |
|
76 |
+
| ROUGE | 0.152 | 0.412 | 0.101 | - | -0.002 | 0.151 | - |
|
77 |
+
| BARTScore | 0.329 | 0.086 | 0.208 | 0.425 | 0.350 | 0.118 | 0.253 |
|
78 |
+
| BERTScore | 0.231 | 0.394 | 0.139 | - | 0.285 | 0.219 | - |
|
79 |
+
| BLEURT | 0.152 | 0.388 | 0.244 | - | 0.138 | 0.263 | - |
|
80 |
+
| CometKiwi | 0.228 | 0.340 | 0.251 | 0.094 | 0.251 | 0.343 | 0.251 |
|
81 |
+
| UniEval | 0.474 | 0.577 | 0.282 | - | - | - | - |
|
82 |
+
| G-Eval (GPT-3.5) | 0.409 | 0.585 | - | 0.461 | - | - | - |
|
83 |
+
| G-Eval (GPT-4) | 0.523 | 0.588 | - | 0.611 | - | - | - |
|
84 |
+
| GPT-3.5 Turbo | 0.416 | 0.578 | 0.306 | 0.431 | 0.328 | 0.347 | 0.401 |
|
85 |
+
| GPT-4 Turbo | 0.511 | **0.746** | 0.320 | 0.637 | 0.473 | **0.437** | 0.521 |
|
86 |
+
| X-Eval | 0.480 | 0.605 | 0.303 | 0.578 | - | - | - |
|
87 |
+
| Prometheus-13B | 0.163 | 0.434 | 0.173 | - | 0.007 | 0.129 | - |
|
88 |
+
| Auto-J-13B | 0.198 | 0.425 | 0.141 | 0.226 | 0.380 | 0.104 | 0.246 |
|
89 |
+
| TIGERScore-13B | 0.384 | 0.346 | 0.200 | 0.504 | 0.231 | 0.248 | 0.319 |
|
90 |
+
| InstructScore-7B | 0.258 | 0.241 | 0.247 | - | 0.298 | 0.219 | - |
|
91 |
+
| **Themis-8B (ours)** | **0.553** | 0.725 | **0.333** | **0.684** | **0.551** | 0.405 | **0.542** |
|
92 |
+
|
93 |
+
We further conduct more in-depth analyses, including generalization tests on unseen tasks like the instruction-following evaluation as well as aspect-targeted perturbation tests, and our Themis also exhibits superior evaluation performance. For more experimental results and details, please refer to our paper.
|
94 |
+
|
95 |
+
## Requirements and Usage
|
96 |
+
|
97 |
+
Please refer to our [github repo](https://github.com/PKU-ONELab/Themis) for more details.
|
98 |
+
|
99 |
+
## Citation
|
100 |
+
|
101 |
+
```
|
102 |
+
@article{hu2024themis,
|
103 |
+
title={Themis: Towards Flexible and Interpretable NLG Evaluation},
|
104 |
+
author={Hu, Xinyu and Lin, Li and Gao, Mingqi and Yin, Xunjian and Wan, Xiaojun},
|
105 |
+
journal={arXiv preprint arXiv:2406.18365},
|
106 |
+
year={2024}
|
107 |
+
}
|
108 |
+
```
|
109 |
+
|