Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) sqft-phi-3-mini-4k-50-base - GGUF - Model creator: https://huggingface.co/IntelLabs/ - Original model: https://huggingface.co/IntelLabs/sqft-phi-3-mini-4k-50-base/ | Name | Quant method | Size | | ---- | ---- | ---- | | [sqft-phi-3-mini-4k-50-base.Q2_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q2_K.gguf) | Q2_K | 1.32GB | | [sqft-phi-3-mini-4k-50-base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_XS.gguf) | IQ3_XS | 1.51GB | | [sqft-phi-3-mini-4k-50-base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_S.gguf) | IQ3_S | 1.57GB | | [sqft-phi-3-mini-4k-50-base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_S.gguf) | Q3_K_S | 1.57GB | | [sqft-phi-3-mini-4k-50-base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_M.gguf) | IQ3_M | 1.73GB | | [sqft-phi-3-mini-4k-50-base.Q3_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K.gguf) | Q3_K | 1.82GB | | [sqft-phi-3-mini-4k-50-base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_M.gguf) | Q3_K_M | 1.82GB | | [sqft-phi-3-mini-4k-50-base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_L.gguf) | Q3_K_L | 1.94GB | | [sqft-phi-3-mini-4k-50-base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ4_XS.gguf) | IQ4_XS | 1.93GB | | [sqft-phi-3-mini-4k-50-base.Q4_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_0.gguf) | Q4_0 | 2.03GB | | [sqft-phi-3-mini-4k-50-base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ4_NL.gguf) | IQ4_NL | 2.04GB | | [sqft-phi-3-mini-4k-50-base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K_S.gguf) | Q4_K_S | 2.04GB | | [sqft-phi-3-mini-4k-50-base.Q4_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K.gguf) | Q4_K | 2.23GB | | [sqft-phi-3-mini-4k-50-base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K_M.gguf) | Q4_K_M | 2.23GB | | [sqft-phi-3-mini-4k-50-base.Q4_1.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_1.gguf) | Q4_1 | 2.24GB | | [sqft-phi-3-mini-4k-50-base.Q5_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_0.gguf) | Q5_0 | 2.46GB | | [sqft-phi-3-mini-4k-50-base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K_S.gguf) | Q5_K_S | 2.46GB | | [sqft-phi-3-mini-4k-50-base.Q5_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K.gguf) | Q5_K | 2.62GB | | [sqft-phi-3-mini-4k-50-base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K_M.gguf) | Q5_K_M | 2.62GB | | [sqft-phi-3-mini-4k-50-base.Q5_1.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_1.gguf) | Q5_1 | 2.68GB | | [sqft-phi-3-mini-4k-50-base.Q6_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q6_K.gguf) | Q6_K | 2.92GB | | [sqft-phi-3-mini-4k-50-base.Q8_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q8_0.gguf) | Q8_0 | 3.78GB | Original model description: --- language: en license: apache-2.0 --- # SQFT Base Model: sqft-phi-3-mini-4k-50-base - Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) - Sparse Method: [Wanda](https://github.com/locuslab/wanda) - Sparsity: 50% - Quantization: No ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) - **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]() ## How to get this model Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11). ## Citation ```bash @article{munoz2024sqft, title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={}, year={2024} } ``` ## Acknowledgement Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach. ## License Apache-2.0