File size: 5,955 Bytes
4745868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
sqft-phi-3-mini-4k-50-base - GGUF
- Model creator: https://huggingface.co/IntelLabs/
- Original model: https://huggingface.co/IntelLabs/sqft-phi-3-mini-4k-50-base/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [sqft-phi-3-mini-4k-50-base.Q2_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q2_K.gguf) | Q2_K | 1.32GB |
| [sqft-phi-3-mini-4k-50-base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_XS.gguf) | IQ3_XS | 1.51GB |
| [sqft-phi-3-mini-4k-50-base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_S.gguf) | IQ3_S | 1.57GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_S.gguf) | Q3_K_S | 1.57GB |
| [sqft-phi-3-mini-4k-50-base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_M.gguf) | IQ3_M | 1.73GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K.gguf) | Q3_K | 1.82GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_M.gguf) | Q3_K_M | 1.82GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_L.gguf) | Q3_K_L | 1.94GB |
| [sqft-phi-3-mini-4k-50-base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ4_XS.gguf) | IQ4_XS | 1.93GB |
| [sqft-phi-3-mini-4k-50-base.Q4_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_0.gguf) | Q4_0 | 2.03GB |
| [sqft-phi-3-mini-4k-50-base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ4_NL.gguf) | IQ4_NL | 2.04GB |
| [sqft-phi-3-mini-4k-50-base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K_S.gguf) | Q4_K_S | 2.04GB |
| [sqft-phi-3-mini-4k-50-base.Q4_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K.gguf) | Q4_K | 2.23GB |
| [sqft-phi-3-mini-4k-50-base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K_M.gguf) | Q4_K_M | 2.23GB |
| [sqft-phi-3-mini-4k-50-base.Q4_1.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_1.gguf) | Q4_1 | 2.24GB |
| [sqft-phi-3-mini-4k-50-base.Q5_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_0.gguf) | Q5_0 | 2.46GB |
| [sqft-phi-3-mini-4k-50-base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K_S.gguf) | Q5_K_S | 2.46GB |
| [sqft-phi-3-mini-4k-50-base.Q5_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K.gguf) | Q5_K | 2.62GB |
| [sqft-phi-3-mini-4k-50-base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K_M.gguf) | Q5_K_M | 2.62GB |
| [sqft-phi-3-mini-4k-50-base.Q5_1.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_1.gguf) | Q5_1 | 2.68GB |
| [sqft-phi-3-mini-4k-50-base.Q6_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q6_K.gguf) | Q6_K | 2.92GB |
| [sqft-phi-3-mini-4k-50-base.Q8_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q8_0.gguf) | Q8_0 | 3.78GB |
Original model description:
---
language: en
license: apache-2.0
---
# SQFT Base Model: sqft-phi-3-mini-4k-50-base
- Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 50%
- Quantization: No
## Model Sources
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]()
## How to get this model
Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11).
## Citation
```bash
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={},
year={2024}
}
```
## Acknowledgement
Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.
## License
Apache-2.0
|