File size: 5,955 Bytes
4745868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


sqft-phi-3-mini-4k-50-base - GGUF
- Model creator: https://huggingface.co/IntelLabs/
- Original model: https://huggingface.co/IntelLabs/sqft-phi-3-mini-4k-50-base/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [sqft-phi-3-mini-4k-50-base.Q2_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q2_K.gguf) | Q2_K | 1.32GB |
| [sqft-phi-3-mini-4k-50-base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_XS.gguf) | IQ3_XS | 1.51GB |
| [sqft-phi-3-mini-4k-50-base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_S.gguf) | IQ3_S | 1.57GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_S.gguf) | Q3_K_S | 1.57GB |
| [sqft-phi-3-mini-4k-50-base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ3_M.gguf) | IQ3_M | 1.73GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K.gguf) | Q3_K | 1.82GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_M.gguf) | Q3_K_M | 1.82GB |
| [sqft-phi-3-mini-4k-50-base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q3_K_L.gguf) | Q3_K_L | 1.94GB |
| [sqft-phi-3-mini-4k-50-base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ4_XS.gguf) | IQ4_XS | 1.93GB |
| [sqft-phi-3-mini-4k-50-base.Q4_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_0.gguf) | Q4_0 | 2.03GB |
| [sqft-phi-3-mini-4k-50-base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.IQ4_NL.gguf) | IQ4_NL | 2.04GB |
| [sqft-phi-3-mini-4k-50-base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K_S.gguf) | Q4_K_S | 2.04GB |
| [sqft-phi-3-mini-4k-50-base.Q4_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K.gguf) | Q4_K | 2.23GB |
| [sqft-phi-3-mini-4k-50-base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_K_M.gguf) | Q4_K_M | 2.23GB |
| [sqft-phi-3-mini-4k-50-base.Q4_1.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q4_1.gguf) | Q4_1 | 2.24GB |
| [sqft-phi-3-mini-4k-50-base.Q5_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_0.gguf) | Q5_0 | 2.46GB |
| [sqft-phi-3-mini-4k-50-base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K_S.gguf) | Q5_K_S | 2.46GB |
| [sqft-phi-3-mini-4k-50-base.Q5_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K.gguf) | Q5_K | 2.62GB |
| [sqft-phi-3-mini-4k-50-base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_K_M.gguf) | Q5_K_M | 2.62GB |
| [sqft-phi-3-mini-4k-50-base.Q5_1.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q5_1.gguf) | Q5_1 | 2.68GB |
| [sqft-phi-3-mini-4k-50-base.Q6_K.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q6_K.gguf) | Q6_K | 2.92GB |
| [sqft-phi-3-mini-4k-50-base.Q8_0.gguf](https://huggingface.co/RichardErkhov/IntelLabs_-_sqft-phi-3-mini-4k-50-base-gguf/blob/main/sqft-phi-3-mini-4k-50-base.Q8_0.gguf) | Q8_0 | 3.78GB |




Original model description:
---
language: en
license: apache-2.0
---

# SQFT Base Model: sqft-phi-3-mini-4k-50-base

- Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 50%
- Quantization: No

## Model Sources

- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]()

## How to get this model

Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11).

## Citation

```bash
@article{munoz2024sqft,
  title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
  journal={},
  year={2024}
}
```

## Acknowledgement

Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.

## License

Apache-2.0