RichardErkhov commited on
Commit
47d348f
·
verified ·
1 Parent(s): 3e35c75

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +178 -0
README.md ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ starchat2-15b-v0.1 - bnb 4bits
11
+ - Model creator: https://huggingface.co/HuggingFaceH4/
12
+ - Original model: https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ base_model: HuggingFaceH4/starchat2-15b-sft-v0.1
20
+ tags:
21
+ - alignment-handbook
22
+ - generated_from_trainer
23
+ datasets:
24
+ - HuggingFaceH4/ultrafeedback_binarized
25
+ - HuggingFaceH4/orca_dpo_pairs
26
+ model-index:
27
+ - name: starchat2-15b-v0.1
28
+ results: []
29
+ ---
30
+
31
+ <img src="https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1/resolve/main/model_logo.png" alt="StarChat2 15B Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
32
+
33
+ # Model Card for StarChat2 15B
34
+
35
+ StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat2 is the latest model in the series, and is a fine-tuned version of [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b) that was trained with SFT and DPO on a mix of synthetic datasets.
36
+
37
+ ## Model Details
38
+
39
+ ### Model Description
40
+
41
+ <!-- Provide a longer summary of what this model is. -->
42
+
43
+ - **Model type:** A 16B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
44
+ - **Language(s) (NLP):** Primarily English and 600+ programming languages.
45
+ - **License:** BigCode Open RAIL-M v1
46
+ - **Finetuned from model:** [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b)
47
+
48
+ ### Model Sources
49
+
50
+ <!-- Provide the basic links for the model. -->
51
+
52
+ - **Repository:** https://github.com/huggingface/alignment-handbook
53
+ - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground
54
+
55
+ ## Performance
56
+
57
+ StarChat2 15B was trained to balance chat and programming capabilities. It achieves strong performance on chat benchmarks like [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and [IFEval](https://arxiv.org/abs/2311.07911), as well as the canonical HumanEval benchmark for Python code completion. The scores reported below were obtained using the [LightEval](https://github.com/huggingface/lighteval) evaluation suite (commit `988959cb905df4baa050f82b4d499d46e8b537f2`) and each prompt has been formatted with the model's corresponding chat template to simulate real-world usage. This is why some scores may differ from those reported in technical reports or on the Open LLM Leaderboard.
58
+
59
+ | Model | MT Bench | IFEval | HumanEval |
60
+ |-------------------------------------------------------------------------------------------------|---------:|-------:|----------:|
61
+ | [starchat2-15b-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1) | 7.66 | 35.12 | 71.34 |
62
+ | [deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) | 4.17 | 14.23 | 80.48 |
63
+ | [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | 6.80 | 43.44 | 50.60 |
64
+
65
+
66
+ ## Intended uses & limitations
67
+
68
+ The model was fine-tuned on a blend of chat, code, math, and reasoning datasets. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/starchat2-playground) to test its coding capabilities.
69
+
70
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
71
+
72
+ ```python
73
+ # pip install 'transformers @ git+https://github.com/huggingface/transformers.git@831bc25d8fdb85768402f772cf65cc3d7872b211'
74
+ # pip install accelerate
75
+
76
+ import torch
77
+ from transformers import pipeline
78
+
79
+ pipe = pipeline(
80
+ "text-generation",
81
+ model="HuggingFaceH4/starchat2-15b-v0.1",
82
+ device_map="auto",
83
+ torch_dtype=torch.bfloat16,
84
+ )
85
+ messages = [
86
+ {
87
+ "role": "system",
88
+ "content": "You are StarChat2, an expert programming assistant",
89
+ },
90
+ {"role": "user", "content": "Write a simple website in HTML. When a user clicks the button, it shows a random Chuck Norris joke."},
91
+ ]
92
+ outputs = pipe(
93
+ messages,
94
+ max_new_tokens=512,
95
+ do_sample=True,
96
+ temperature=0.7,
97
+ top_k=50,
98
+ top_p=0.95,
99
+ stop_sequence="<|im_end|>",
100
+ )
101
+ print(outputs[0]["generated_text"][-1]["content"])
102
+ ```
103
+
104
+ ## Bias, Risks, and Limitations
105
+
106
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
107
+
108
+ StarChat2 15B has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
109
+ Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the [StarCoder2 dataset](https://huggingface.co/datasets/bigcode/the-stack-v2)
110
+
111
+ Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect.
112
+ For example, it may produce code that does not compile or that produces incorrect results.
113
+ It may also produce code that is vulnerable to security exploits.
114
+ We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking.
115
+
116
+ StarChat2 15B was fine-tuned from the base model [StarCoder2](https://huggingface.co/bigcode/starcoder2-15b), please refer to its model card's [Limitations Section](https://huggingface.co/bigcode/starcoder2-15b#limitations) for relevant information.
117
+ In particular, the model was evaluated on some categories of gender biases, propensity for toxicity, and risk of suggesting code completions with known security flaws; these evaluations are reported in its [technical report](https://huggingface.co/papers/2402.19173).
118
+
119
+
120
+ ## Training details
121
+
122
+ This model is a fine-tuned version of [starchat2-15b-sft-v0.1](https://huggingface.co/HuggingFaceH4/starchat2-15b-sft-v0.1) on the HuggingFaceH4/ultrafeedback_binarized and the HuggingFaceH4/orca_dpo_pairs datasets. Check out the recipe in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook) for more details.
123
+
124
+ It achieves the following results on the evaluation set:
125
+ - Loss: 0.4347
126
+ - Rewards/chosen: -0.9461
127
+ - Rewards/rejected: -2.7745
128
+ - Rewards/accuracies: 0.7658
129
+ - Rewards/margins: 1.8284
130
+ - Logps/rejected: -322.1934
131
+ - Logps/chosen: -316.1898
132
+ - Logits/rejected: -2.3817
133
+ - Logits/chosen: -2.3005
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 5e-07
141
+ - train_batch_size: 2
142
+ - eval_batch_size: 4
143
+ - seed: 42
144
+ - distributed_type: multi-GPU
145
+ - num_devices: 8
146
+ - gradient_accumulation_steps: 8
147
+ - total_train_batch_size: 128
148
+ - total_eval_batch_size: 32
149
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
150
+ - lr_scheduler_type: cosine
151
+ - lr_scheduler_warmup_ratio: 0.1
152
+ - num_epochs: 2
153
+
154
+ ### Training results
155
+
156
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
157
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
158
+ | 0.717 | 0.17 | 100 | 0.6006 | -0.0924 | -0.2899 | 0.6329 | 0.1975 | -272.5022 | -299.1165 | -2.5313 | -2.4191 |
159
+ | 0.6273 | 0.35 | 200 | 0.5160 | -0.3994 | -0.9461 | 0.6930 | 0.5467 | -285.6261 | -305.2568 | -2.5281 | -2.4278 |
160
+ | 0.5538 | 0.52 | 300 | 0.4781 | -0.6589 | -1.5892 | 0.7247 | 0.9302 | -298.4870 | -310.4470 | -2.4996 | -2.4110 |
161
+ | 0.5056 | 0.7 | 400 | 0.4594 | -0.8283 | -2.1332 | 0.7437 | 1.3050 | -309.3687 | -313.8344 | -2.4472 | -2.3644 |
162
+ | 0.4983 | 0.87 | 500 | 0.4512 | -0.7758 | -2.2806 | 0.7468 | 1.5049 | -312.3167 | -312.7843 | -2.4223 | -2.3404 |
163
+ | 0.4662 | 1.04 | 600 | 0.4431 | -0.7839 | -2.4016 | 0.7658 | 1.6177 | -314.7355 | -312.9465 | -2.4049 | -2.3215 |
164
+ | 0.4411 | 1.22 | 700 | 0.4415 | -1.0090 | -2.7582 | 0.7690 | 1.7492 | -321.8679 | -317.4481 | -2.3840 | -2.3016 |
165
+ | 0.471 | 1.39 | 800 | 0.4368 | -0.9617 | -2.7445 | 0.7690 | 1.7828 | -321.5930 | -316.5019 | -2.3809 | -2.2991 |
166
+ | 0.4485 | 1.57 | 900 | 0.4351 | -0.9490 | -2.7594 | 0.7722 | 1.8103 | -321.8916 | -316.2497 | -2.3815 | -2.3004 |
167
+ | 0.4411 | 1.74 | 1000 | 0.4348 | -0.9293 | -2.7469 | 0.7658 | 1.8176 | -321.6409 | -315.8547 | -2.3823 | -2.3011 |
168
+ | 0.4499 | 1.92 | 1100 | 0.4348 | -0.9482 | -2.7767 | 0.7658 | 1.8285 | -322.2369 | -316.2320 | -2.3828 | -2.3012 |
169
+
170
+
171
+ ### Framework versions
172
+
173
+ - Transformers 4.39.0.dev0
174
+ - Pytorch 2.1.2+cu121
175
+ - Datasets 2.16.1
176
+ - Tokenizers 0.15.1
177
+
178
+