uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
MiniChat-3B - bnb 8bits
|
11 |
+
- Model creator: https://huggingface.co/GeneZC/
|
12 |
+
- Original model: https://huggingface.co/GeneZC/MiniChat-3B/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: apache-2.0
|
20 |
+
language:
|
21 |
+
- en
|
22 |
+
- zh
|
23 |
+
library_name: transformers
|
24 |
+
widget:
|
25 |
+
- text: "<s> [|User|] Hi 👋 </s>[|Assistant|]"
|
26 |
+
---
|
27 |
+
|
28 |
+
## MiniChat-3B
|
29 |
+
|
30 |
+
📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B)
|
31 |
+
|
32 |
+
🆕 **Updates: MiniChat-1.5-3B**
|
33 |
+
|
34 |
+
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
|
35 |
+
|
36 |
+
A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".
|
37 |
+
|
38 |
+
Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.
|
39 |
+
|
40 |
+
<img src="./teaser_b.jpg" alt="teaser_b" width="687" />
|
41 |
+
|
42 |
+
The following is an example code snippet to use MiniChat-3B:
|
43 |
+
|
44 |
+
```python
|
45 |
+
import torch
|
46 |
+
|
47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
48 |
+
|
49 |
+
from conversation import get_default_conv_template
|
50 |
+
|
51 |
+
# MiniChat
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
|
53 |
+
# GPU.
|
54 |
+
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
|
55 |
+
# CPU.
|
56 |
+
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float32).eval()
|
57 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
58 |
+
conv = get_default_conv_template("minichat")
|
59 |
+
|
60 |
+
question = "Implement a program to find the common elements in two arrays without using any extra data structures."
|
61 |
+
conv.append_message(conv.roles[0], question)
|
62 |
+
conv.append_message(conv.roles[1], None)
|
63 |
+
prompt = conv.get_prompt()
|
64 |
+
input_ids = tokenizer([prompt]).input_ids
|
65 |
+
output_ids = model.generate(
|
66 |
+
torch.as_tensor(input_ids).to(device),
|
67 |
+
do_sample=True,
|
68 |
+
temperature=0.7,
|
69 |
+
max_new_tokens=1024,
|
70 |
+
)
|
71 |
+
output_ids = output_ids[0][len(input_ids[0]):]
|
72 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
73 |
+
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
|
74 |
+
# Multiturn conversation could be realized by continuously appending questions to `conv`.
|
75 |
+
```
|
76 |
+
|
77 |
+
## Bibtex
|
78 |
+
|
79 |
+
```bibtex
|
80 |
+
@article{zhang2023law,
|
81 |
+
title={Towards the Law of Capacity Gap in Distilling Language Models},
|
82 |
+
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
|
83 |
+
year={2023},
|
84 |
+
url={https://arxiv.org/abs/2311.07052}
|
85 |
+
}
|
86 |
+
```
|
87 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
88 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GeneZC__MiniChat-3B)
|
89 |
+
|
90 |
+
| Metric | Value |
|
91 |
+
|-----------------------|---------------------------|
|
92 |
+
| Avg. | 42.94 |
|
93 |
+
| ARC (25-shot) | 44.03 |
|
94 |
+
| HellaSwag (10-shot) | 67.19 |
|
95 |
+
| MMLU (5-shot) | 39.17 |
|
96 |
+
| TruthfulQA (0-shot) | 45.67 |
|
97 |
+
| Winogrande (5-shot) | 65.27 |
|
98 |
+
| GSM8K (5-shot) | 10.54 |
|
99 |
+
| DROP (3-shot) | 28.73 |
|
100 |
+
|
101 |
+
|