File size: 11,373 Bytes
2c92764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


MiniChat-2-3B - GGUF
- Model creator: https://huggingface.co/GeneZC/
- Original model: https://huggingface.co/GeneZC/MiniChat-2-3B/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [MiniChat-2-3B.Q2_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q2_K.gguf) | Q2_K | 1.09GB |
| [MiniChat-2-3B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.IQ3_XS.gguf) | IQ3_XS | 1.21GB |
| [MiniChat-2-3B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.IQ3_S.gguf) | IQ3_S | 1.27GB |
| [MiniChat-2-3B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q3_K_S.gguf) | Q3_K_S | 1.27GB |
| [MiniChat-2-3B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.IQ3_M.gguf) | IQ3_M | 1.33GB |
| [MiniChat-2-3B.Q3_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q3_K.gguf) | Q3_K | 1.4GB |
| [MiniChat-2-3B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q3_K_M.gguf) | Q3_K_M | 1.4GB |
| [MiniChat-2-3B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q3_K_L.gguf) | Q3_K_L | 1.52GB |
| [MiniChat-2-3B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.IQ4_XS.gguf) | IQ4_XS | 1.55GB |
| [MiniChat-2-3B.Q4_0.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q4_0.gguf) | Q4_0 | 1.62GB |
| [MiniChat-2-3B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.IQ4_NL.gguf) | IQ4_NL | 1.63GB |
| [MiniChat-2-3B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q4_K_S.gguf) | Q4_K_S | 1.63GB |
| [MiniChat-2-3B.Q4_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q4_K.gguf) | Q4_K | 1.72GB |
| [MiniChat-2-3B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q4_K_M.gguf) | Q4_K_M | 1.72GB |
| [MiniChat-2-3B.Q4_1.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q4_1.gguf) | Q4_1 | 1.79GB |
| [MiniChat-2-3B.Q5_0.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q5_0.gguf) | Q5_0 | 1.95GB |
| [MiniChat-2-3B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q5_K_S.gguf) | Q5_K_S | 1.95GB |
| [MiniChat-2-3B.Q5_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q5_K.gguf) | Q5_K | 2.01GB |
| [MiniChat-2-3B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q5_K_M.gguf) | Q5_K_M | 2.01GB |
| [MiniChat-2-3B.Q5_1.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q5_1.gguf) | Q5_1 | 2.12GB |
| [MiniChat-2-3B.Q6_K.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q6_K.gguf) | Q6_K | 2.31GB |
| [MiniChat-2-3B.Q8_0.gguf](https://huggingface.co/RichardErkhov/GeneZC_-_MiniChat-2-3B-gguf/blob/main/MiniChat-2-3B.Q8_0.gguf) | Q8_0 | 2.99GB |




Original model description:
---
language:
- en
- zh
license: apache-2.0
library_name: transformers
widget:
- text: <s> [|User|] Hi 👋  </s>[|Assistant|]
model-index:
- name: MiniChat-2-3B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 44.88
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 67.69
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.59
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.64
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.46
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 32.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GeneZC/MiniChat-2-3B
      name: Open LLM Leaderboard
---

## MiniChat-2-3B

📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤗 [HuggingFace-MiniMA-2](https://huggingface.co/GeneZC/MiniMA-2-3B) | 🤗 [HuggingFace-MiniChat-2](https://huggingface.co/GeneZC/MiniChat-2-3B)

🆕 **Updates from MiniChat-3B**: 
- better base model MiniMA-2-3B;
- better data mixture;
- use of [NEFTune](https://arxiv.org/abs/2310.05914);
- use of [DPO](https://arxiv.org/abs/2305.18290).

❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.

A language model continued from MiniMA-3B and finetuned on both instruction and preference data.

Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench.

<img src="./teaser_b.jpg" alt="teaser_b" width="687" />

**Standard Benchmarks**

|Method|TFLOPs|MMLU (5-shot)|CEval (5-shot)|DROP (3-shot)|HumanEval (0-shot)|BBH (3-shot)|GSM8K (8-shot)|
|--|--|--|--|--|--|--|--|
|Mamba-2.8B|4.6E9|25.58|24.74|15.72|7.32|29.37|3.49|
|ShearedLLaMA-2.7B|0.8E9|26.97|22.88|19.98|4.88|30.48|3.56|
|BTLM-3B|11.3E9|27.20|26.00|17.84|10.98|30.87|4.55|
|StableLM-3B|72.0E9|44.75|31.05|22.35|15.85|32.59|10.99|
|Qwen-1.8B|23.8E9|44.05|54.75|12.97|14.02|30.80|22.97|
|Phi-2-2.8B|159.9E9|56.74|34.03|30.74|46.95|44.13|55.42|
|LLaMA-2-7B|84.0E9|46.00|34.40|31.57|12.80|32.02|14.10|
||
|MiniMA-3B|4.0E9|28.51|28.23|22.50|10.98|31.61|8.11|
|MiniChat-3B|4.0E9|38.40|36.48|22.58|18.29|31.36|29.72|
|MiniMA-2-3B|13.4E9|40.14|44.65|23.10|14.63|31.43|8.87|
|MiniChat-2-3B|13.4E9|46.17|43.91|30.26|22.56|34.95|38.13|

**Instruction-following Benchmarks**

|Method|AlpacaEval|MT-Bench|MT-Bench-ZH|
|--|--|--|--|
|GPT-4|95.28|9.18|8.96|
|Zephyr-7B-Beta|90.60|7.34|6.27<sup>#</sup>|
|Vicuna-7B|76.84|6.17|5.22<sup>#</sup>|
|LLaMA-2-Chat-7B|71.37|6.27|5.43<sup>#</sup>|
|Qwen-Chat-7B|-|-|6.24|
|Phi-2-DPO|81.37|-|1.59<sup>#</sup><sup>$</sup>|
|StableLM-Zephyr-3B|76.00|6.64|4.31<sup>#</sup>|
|Rocket-3B|79.75|6.56|4.07<sup>#</sup>|
|Qwen-Chat-1.8B|-|-|5.65|
||
|MiniChat-3B|48.82|-|-|
|MiniChat-2-3B|77.30|6.23|6.04|

<sup>#</sup> specialized mainly for English.

<sup>$</sup> finetuned without multi-turn instruction data.

The following is an example code snippet to use MiniChat-2-3B:

```python
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from conversation import get_default_conv_template

# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()

conv = get_default_conv_template("minichat")

question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
    torch.as_tensor(input_ids).cuda(),
    do_sample=True,
    temperature=0.7,
    max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n    if len(arr1) == 0:\n        return []\n    if len(arr2) == 0:\n        return arr1\n\n    common_elements = []\n    for element in arr1:\n        if element in arr2:\n            common_elements.append(element)\n\n    return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.
```

## Bibtex

```bibtex
@article{zhang2023law,
    title={Towards the Law of Capacity Gap in Distilling Language Models},
    author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
    year={2023},
    url={https://arxiv.org/abs/2311.07052}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GeneZC__MiniChat-2-3B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |51.49|
|AI2 Reasoning Challenge (25-Shot)|44.88|
|HellaSwag (10-Shot)              |67.69|
|MMLU (5-Shot)                    |47.59|
|TruthfulQA (0-shot)              |49.64|
|Winogrande (5-shot)              |66.46|
|GSM8k (5-shot)                   |32.68|