Rexopia commited on
Commit
5ad8754
·
1 Parent(s): 601c597

Track large files with Git LFS

Browse files
README.md CHANGED
@@ -1,3 +1,206 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - hawk
7
+ pipeline_tag: text-generation
8
  ---
9
+ # HawkLM-Chat-demo
10
+
11
+ <!-- Provide a quick summary of what the model is/does. -->
12
+
13
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+
19
+ <!-- Provide a longer summary of what this model is. -->
20
+
21
+
22
+
23
+ - **Developed by:** Rexopia
24
+ - **Reach me:** [email protected]
25
+ - **Language(s) (NLP):** English
26
+ - **License:** Apache license 2.0
27
+ - **Pretrained model:** False
28
+
29
+ ### Model Sources
30
+
31
+ <!-- Provide the basic links for the model. -->
32
+
33
+ - **Github Repository:** Coming soon
34
+ - **Demo version:** True
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ ```python
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained("Rexopia/HawkLM-Chat-demo", trust_remote_code=True)
78
+ model = AutoModelForCausalLM.from_pretrained("Rexopia/HawkLM-Chat-demo", device_map="auto", trust_remote_code=True)
79
+ ```
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ We sampled from Redpajama 1T datasets without any Arxiv and GitHub tags.
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Data Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+
206
+
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "silu",
3
+ "architectures": [
4
+ "HawkForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_hawk.HawkConfig",
8
+ "AutoModelForCausalLM": "modelling_hawk.HawkForCausalLM"
9
+ },
10
+ "attn_pdrop": 0.0,
11
+ "bos_token_id": 65535,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": 65535,
14
+ "initializer_range": 0.02,
15
+ "layer_norm_epsilon": 1e-06,
16
+ "model_type": "hawk",
17
+ "n_embd": 1024,
18
+ "n_head": 16,
19
+ "n_inner": 2688,
20
+ "n_layer": 20,
21
+ "n_positions": 1024,
22
+ "reorder_and_upcast_attn": false,
23
+ "resid_pdrop": 0.0,
24
+ "rotary_dim": 64,
25
+ "scale_attn_by_inverse_layer_idx": false,
26
+ "scale_attn_weights": true,
27
+ "summary_activation": null,
28
+ "summary_first_dropout": 0.0,
29
+ "summary_proj_to_labels": true,
30
+ "summary_type": "cls_index",
31
+ "summary_use_proj": true,
32
+ "tokenizer_class": "HawkTokenizer",
33
+ "transformers_version": "4.31.0",
34
+ "use_cache": true,
35
+ "vocab_size": 65536
36
+ }
configuration_hawk.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+ class HawkConfig(PretrainedConfig):
4
+ """
5
+ # TODO Need to Expand More!
6
+ """
7
+
8
+ model_type = "hawk"
9
+ keys_to_ignore_at_inference = ["past_key_values"]
10
+ attribute_map = {
11
+ "hidden_size": "n_embd",
12
+ "max_position_embeddings": "n_positions",
13
+ "num_attention_heads": "n_head",
14
+ "num_hidden_layers": "n_layer",
15
+ }
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_size=65536,
20
+ n_positions=1024,
21
+ n_embd=1024,
22
+ n_layer=24,
23
+ n_head=16,
24
+ n_inner=None,
25
+ activation_function="silu",
26
+ resid_pdrop=0.0,
27
+ embd_pdrop=0.0,
28
+ attn_pdrop=0.0,
29
+ layer_norm_epsilon=1e-6,
30
+ initializer_range=0.02,
31
+ summary_type="cls_index",
32
+ summary_use_proj=True,
33
+ summary_activation=None,
34
+ summary_proj_to_labels=True,
35
+ summary_first_dropout=0.0,
36
+ scale_attn_weights=True,
37
+ use_cache=True,
38
+ bos_token_id=1,
39
+ eos_token_id=2,
40
+ scale_attn_by_inverse_layer_idx=False,
41
+ reorder_and_upcast_attn=False,
42
+ **kwargs,
43
+ ):
44
+ self.vocab_size = vocab_size
45
+ self.n_positions = n_positions
46
+ self.n_embd = n_embd
47
+ self.n_layer = n_layer
48
+ self.n_head = n_head
49
+ self.n_inner = n_inner
50
+ self.activation_function = activation_function
51
+ self.resid_pdrop = resid_pdrop
52
+ self.embd_pdrop = embd_pdrop
53
+ self.attn_pdrop = attn_pdrop
54
+ self.layer_norm_epsilon = layer_norm_epsilon
55
+ self.initializer_range = initializer_range
56
+ self.summary_type = summary_type
57
+ self.summary_use_proj = summary_use_proj
58
+ self.summary_activation = summary_activation
59
+ self.summary_first_dropout = summary_first_dropout
60
+ self.summary_proj_to_labels = summary_proj_to_labels
61
+ self.scale_attn_weights = scale_attn_weights
62
+ self.use_cache = use_cache
63
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
64
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
65
+
66
+ self.bos_token_id = bos_token_id
67
+ self.eos_token_id = eos_token_id
68
+
69
+ self.rotary_dim = 32 # TODO Need to modify
70
+
71
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modelling_hawk.py ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+
6
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, CausalLMOutputWithCrossAttentions
7
+ from transformers.modeling_utils import PreTrainedModel
8
+ from transformers.utils import logging
9
+ from transformers.activations import ACT2FN
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+ from .configuration_hawk import HawkConfig
14
+
15
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
16
+ def _make_causal_mask(
17
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
18
+ ):
19
+ """
20
+ Make causal mask used for bi-directional self-attention.
21
+ """
22
+ bsz, tgt_len = input_ids_shape
23
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
24
+ mask_cond = torch.arange(mask.size(-1), device=device)
25
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
26
+ mask = mask.to(dtype)
27
+
28
+ if past_key_values_length > 0:
29
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
30
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
31
+
32
+
33
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
34
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
35
+ """
36
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
37
+ """
38
+ bsz, src_len = mask.size()
39
+ tgt_len = tgt_len if tgt_len is not None else src_len
40
+
41
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
42
+
43
+ inverted_mask = 1.0 - expanded_mask
44
+
45
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
46
+
47
+
48
+ class RotaryEmbedding(torch.nn.Module):
49
+ def __init__(self, dim, max_position_embeddings, base=10000, device=None):
50
+ super().__init__()
51
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
52
+ self.register_buffer("inv_freq", inv_freq)
53
+
54
+ # Build here to make `torch.jit.trace` work.
55
+ self.max_seq_len_cached = max_position_embeddings
56
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
57
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
58
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
59
+ emb = torch.cat((freqs, freqs), dim=-1)
60
+ self.cos_cached = emb.cos()[None, None, :, :]
61
+ self.sin_cached = emb.sin()[None, None, :, :]
62
+
63
+ def forward(self, x, seq_len=None):
64
+ # x: [bs, num_attention_heads, seq_len, head_size]
65
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
66
+ if seq_len > self.max_seq_len_cached:
67
+ self.max_seq_len_cached = seq_len
68
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
69
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
70
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
71
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
72
+ self.cos_cached = emb.cos()[None, None, :, :]
73
+ self.sin_cached = emb.sin()[None, None, :, :]
74
+ return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device)
75
+
76
+
77
+ def rotate_half(x):
78
+ """Rotates half the hidden dims of the input."""
79
+ x1 = x[..., : x.shape[-1] // 2]
80
+ x2 = x[..., x.shape[-1] // 2 :]
81
+ return torch.cat((-x2, x1), dim=-1)
82
+
83
+
84
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
85
+ gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
86
+ gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
87
+ cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
88
+ sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
89
+ q_embed = (q * cos) + (rotate_half(q) * sin)
90
+ k_embed = (k * cos) + (rotate_half(k) * sin)
91
+ return q_embed, k_embed
92
+
93
+ try:
94
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func
95
+ except ImportError:
96
+ flash_attn_unpadded_func = None
97
+
98
+ try:
99
+ from einops import rearrange
100
+ except ImportError:
101
+ rearrange = None
102
+
103
+ class FlashSelfAttention(torch.nn.Module):
104
+ """Implement the scaled dot product attention with softmax.
105
+ Arguments
106
+ ---------
107
+ softmax_scale: The temperature to use for the softmax attention.do
108
+ (default: 1/sqrt(d_keys) where d_keys is computed at
109
+ runtime)
110
+ attention_dropout: The dropout rate to apply to the attention
111
+ (default: 0.0)
112
+ """
113
+ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
114
+ device=None, dtype=None):
115
+ super().__init__()
116
+ assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
117
+ 'e.g., with pip install flash-attn')
118
+ assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
119
+ self.causal = causal
120
+ self.softmax_scale = softmax_scale
121
+ self.dropout_p = attention_dropout
122
+
123
+ def forward(self, q, k, v):
124
+ """Implements the multihead softmax attention.
125
+ Arguments
126
+ ---------
127
+ q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
128
+ """
129
+
130
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
131
+ assert all((i.is_cuda for i in (q,k,v)))
132
+
133
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
134
+ seqlen_k = k.shape[1]
135
+
136
+ q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
137
+ cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
138
+ device=q.device)
139
+
140
+ if self.training:
141
+ # during training q,k,v always have same seqlen
142
+ assert seqlen_k == seqlen_q
143
+
144
+ is_causal = self.causal
145
+ cu_seqlens_k = cu_seqlens_q
146
+ dropout_p = self.dropout_p
147
+ else:
148
+ # turn off FA causal mask after first inference autoregressive iteration
149
+ # only on first autoregressive step q,k,v have same seqlen
150
+ is_causal = seqlen_q == seqlen_k
151
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
152
+ device=q.device)
153
+ dropout_p = 0
154
+
155
+ output = flash_attn_unpadded_func(
156
+ q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
157
+ dropout_p,
158
+ softmax_scale=self.softmax_scale, causal=is_causal
159
+ )
160
+
161
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
162
+ return output
163
+
164
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention
165
+ class Attention(torch.nn.Module):
166
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
167
+
168
+ def __init__(self, config: HawkConfig):
169
+ super().__init__()
170
+ self.config = config
171
+ self.hidden_size = config.n_embd
172
+ self.num_heads = config.n_head
173
+ self.head_dim = self.hidden_size // self.num_heads
174
+ self.max_position_embeddings = config.n_positions
175
+ self.rotary_ndims = config.rotary_dim
176
+
177
+ if (self.head_dim * self.num_heads) != self.hidden_size:
178
+ raise ValueError(
179
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
180
+ f" and `num_heads`: {self.num_heads})."
181
+ )
182
+ self.qkv_proj = torch.nn.Linear(self.hidden_size, 3 * self.num_heads * self.head_dim, bias=False)
183
+ #self.core_attention_flash = FlashSelfAttention(
184
+ # causal=True, attention_dropout=config.attn_pdrop
185
+ # )
186
+ self.c_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
187
+
188
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
189
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
190
+
191
+ def _split_heads(self, tensor, num_heads, attn_head_size):
192
+ """
193
+ Splits hidden_size dim into attn_head_size and num_heads
194
+ """
195
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
196
+ tensor = tensor.view(new_shape)
197
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
198
+
199
+ def forward(
200
+ self,
201
+ hidden_states: torch.Tensor,
202
+ attention_mask: Optional[torch.Tensor] = None,
203
+ position_ids: Optional[torch.LongTensor] = None,
204
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
205
+ output_attentions: bool = False,
206
+ use_cache: bool = False,
207
+ rotary_pos_emb = None,
208
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
209
+
210
+ bsz, q_len, _ = hidden_states.size() # ruji modified
211
+ qkv_states = self.qkv_proj(hidden_states)
212
+
213
+ query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
214
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).permute(0,2,1,3)
215
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).permute(0,2,1,3)
216
+ value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).permute(0,2,1,3)
217
+
218
+ # Compute rotary embeddings on rotary_ndims
219
+ query_rot = query_states[..., : self.rotary_ndims]
220
+ query_pass = query_states[..., self.rotary_ndims :]
221
+ key_rot = key_states[..., : self.rotary_ndims]
222
+ key_pass = key_states[..., self.rotary_ndims :]
223
+
224
+ # Compute token offset for rotary embeddings (when decoding)
225
+ kv_seq_len = key_states.shape[-2]
226
+ if past_key_value:
227
+ kv_seq_len += past_key_value[0].shape[-2]
228
+ cos, sin = rotary_pos_emb(value_states, seq_len=kv_seq_len)
229
+ query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
230
+ query_states = torch.cat((query, query_pass), dim=-1)
231
+ key_states = torch.cat((key, key_pass), dim=-1)
232
+
233
+ if past_key_value is not None:
234
+ # reuse k, v, self_attention
235
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
236
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
237
+
238
+ past_key_value = (key_states, value_states) if use_cache else None
239
+
240
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
241
+
242
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
243
+ raise ValueError(
244
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
245
+ f" {attn_weights.size()}"
246
+ )
247
+
248
+ if attention_mask is not None:
249
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
250
+ raise ValueError(
251
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
252
+ )
253
+ attn_weights = attn_weights + attention_mask
254
+ attn_weights = torch.max(
255
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
256
+ )
257
+
258
+ # upcast attention to fp32
259
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
260
+ attn_output = torch.matmul(attn_weights, value_states)
261
+
262
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
263
+ raise ValueError(
264
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
265
+ f" {attn_output.size()}"
266
+ )
267
+
268
+ attn_output = attn_output.transpose(1, 2)
269
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
270
+
271
+ attn_output = self.c_proj(attn_output)
272
+
273
+ if not output_attentions:
274
+ attn_weights = None
275
+
276
+ return attn_output, attn_weights, past_key_value
277
+
278
+ class MLP(torch.nn.Module):
279
+ def __init__(self, hidden_size, intermediate_size, hidden_act):
280
+ super().__init__()
281
+ self.c_fc = torch.nn.Linear(hidden_size, intermediate_size*2, bias=False)
282
+ self.c_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
283
+ def swiglu(x):
284
+ x = torch.chunk(x, 2, dim=-1)
285
+ return torch.nn.functional.silu(x[0]) * x[1]
286
+ self.activation_func = swiglu
287
+
288
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
289
+ intermediate_parallel = self.c_fc(hidden_states)
290
+ intermediate_parallel = self.activation_func(intermediate_parallel)
291
+ output = self.c_proj(intermediate_parallel)
292
+ return output
293
+
294
+ class HawkBlock(torch.nn.Module):
295
+ def __init__(self, config: HawkConfig):
296
+ super().__init__()
297
+ self.hidden_size = config.n_embd
298
+ self.input_layernorm = torch.nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
299
+ self.attn = Attention(config=config)
300
+ self.post_attention_layernorm = torch.nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
301
+ self.mlp = MLP(
302
+ hidden_size=self.hidden_size,
303
+ intermediate_size=config.n_inner,
304
+ hidden_act=config.activation_function,
305
+ )
306
+
307
+ def forward(
308
+ self,
309
+ hidden_states: torch.Tensor,
310
+ attention_mask: Optional[torch.Tensor] = None,
311
+ position_ids: Optional[torch.LongTensor] = None,
312
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
313
+ output_attentions: Optional[bool] = False,
314
+ use_cache: Optional[bool] = False,
315
+ rotary_pos_emb = None,
316
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
317
+ """
318
+ Args:
319
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
320
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
321
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
322
+ output_attentions (`bool`, *optional*):
323
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
324
+ returned tensors for more detail.
325
+ use_cache (`bool`, *optional*):
326
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
327
+ (see `past_key_values`).
328
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
329
+ """
330
+
331
+ residual = hidden_states
332
+ hidden_states = self.input_layernorm(hidden_states)
333
+
334
+ # Self Attention
335
+ hidden_states, self_attn_weights, present_key_value = self.attn(
336
+ hidden_states=hidden_states,
337
+ attention_mask=attention_mask,
338
+ position_ids=position_ids,
339
+ past_key_value=past_key_value,
340
+ output_attentions=output_attentions,
341
+ use_cache=use_cache,
342
+ rotary_pos_emb=rotary_pos_emb,
343
+ )
344
+
345
+ hidden_states = residual + hidden_states
346
+
347
+ # Fully Connected
348
+ residual = hidden_states
349
+
350
+ hidden_states = self.post_attention_layernorm(hidden_states)
351
+ hidden_states = self.mlp(hidden_states)
352
+ hidden_states = residual + hidden_states
353
+
354
+ outputs = (hidden_states,)
355
+
356
+ if output_attentions:
357
+ outputs += (self_attn_weights,)
358
+
359
+ if use_cache:
360
+ outputs += (present_key_value,)
361
+
362
+ return outputs
363
+
364
+ class HawkPreTrainedModel(PreTrainedModel):
365
+ config_class = HawkConfig
366
+ base_model_prefix = "model"
367
+ supports_gradient_checkpointing = True
368
+ _no_split_modules = ["HawkBlock"]
369
+ _skip_keys_device_placement = "past_key_values"
370
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
371
+
372
+ def _init_weights(self, module):
373
+ std = self.config.initializer_range
374
+ if isinstance(module, torch.nn.Linear):
375
+ module.weight.data.normal_(mean=0.0, std=std)
376
+ if module.bias is not None:
377
+ module.bias.data.zero_()
378
+ elif isinstance(module, torch.nn.Embedding):
379
+ module.weight.data.normal_(mean=0.0, std=std)
380
+ if module.padding_idx is not None:
381
+ module.weight.data[module.padding_idx].zero_()
382
+
383
+ def _set_gradient_checkpointing(self, module, value=False):
384
+ if isinstance(module, HawkModel):
385
+ module.gradient_checkpointing = value
386
+
387
+ class HawkModel(HawkPreTrainedModel):
388
+ """
389
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HawkBlock`]
390
+
391
+ Args:
392
+ config: HawkConfig
393
+ """
394
+
395
+ def __init__(self, config: HawkConfig):
396
+ super().__init__(config)
397
+ self.vocab_size = config.vocab_size
398
+
399
+ self.word_embeddings = torch.nn.Embedding(config.vocab_size, config.n_embd)
400
+ self.rotary_pos_emb = RotaryEmbedding(config.rotary_dim, config.n_positions)
401
+ self.layers = torch.nn.ModuleList([HawkBlock(config) for _ in range(config.n_layer)])
402
+ self.final_layernorm = torch.nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
403
+
404
+ self.gradient_checkpointing = False
405
+ # Initialize weights and apply final processing
406
+ self.post_init()
407
+
408
+ def get_input_embeddings(self):
409
+ return self.word_embeddings
410
+
411
+ def set_input_embeddings(self, value):
412
+ self.word_embeddings = value
413
+
414
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
415
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
416
+ # create causal mask
417
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
418
+ combined_attention_mask = None
419
+ if input_shape[-1] > 1:
420
+ combined_attention_mask = _make_causal_mask(
421
+ input_shape,
422
+ inputs_embeds.dtype,
423
+ device=inputs_embeds.device,
424
+ past_key_values_length=past_key_values_length,
425
+ )
426
+
427
+ if attention_mask is not None:
428
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
429
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
430
+ inputs_embeds.device
431
+ )
432
+ combined_attention_mask = (
433
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
434
+ )
435
+
436
+ return combined_attention_mask
437
+
438
+ def forward(
439
+ self,
440
+ input_ids: torch.LongTensor = None,
441
+ attention_mask: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
445
+ use_cache: Optional[bool] = None,
446
+ output_attentions: Optional[bool] = None,
447
+ output_hidden_states: Optional[bool] = None,
448
+ return_dict: Optional[bool] = None,
449
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
450
+
451
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
452
+ output_hidden_states = (
453
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
454
+ )
455
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
456
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
457
+
458
+ # retrieve input_ids and inputs_embeds
459
+ if input_ids is not None and inputs_embeds is not None:
460
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
461
+ elif input_ids is not None:
462
+ batch_size, seq_length = input_ids.shape
463
+ elif inputs_embeds is not None:
464
+ batch_size, seq_length, _ = inputs_embeds.shape
465
+ else:
466
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
467
+
468
+ seq_length_with_past = seq_length
469
+ past_key_values_length = 0
470
+
471
+ if past_key_values is not None:
472
+ past_key_values_length = past_key_values[0][0].shape[2]
473
+ seq_length_with_past = seq_length_with_past + past_key_values_length
474
+
475
+ if position_ids is None:
476
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
477
+ position_ids = torch.arange(
478
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
479
+ )
480
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
481
+ else:
482
+ position_ids = position_ids.view(-1, seq_length).long()
483
+
484
+ if inputs_embeds is None:
485
+ inputs_embeds = self.word_embeddings(input_ids)
486
+ # embed positions
487
+ if attention_mask is None:
488
+ attention_mask = torch.ones(
489
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
490
+ )
491
+ attention_mask = self._prepare_decoder_attention_mask(
492
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
493
+ )
494
+
495
+ # Rotary positional embeddings
496
+ rotary_pos_emb = self.rotary_pos_emb
497
+
498
+ hidden_states = inputs_embeds
499
+
500
+ if self.gradient_checkpointing and self.training:
501
+ if use_cache:
502
+ logger.warning_once(
503
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
504
+ )
505
+ use_cache = False
506
+
507
+ # decoder layers
508
+ all_hidden_states = () if output_hidden_states else None
509
+ all_self_attns = () if output_attentions else None
510
+ next_decoder_cache = () if use_cache else None
511
+
512
+ for idx, decoder_layer in enumerate(self.layers):
513
+ # print(f'idx: {idx}')
514
+ if output_hidden_states:
515
+ all_hidden_states += (hidden_states,)
516
+
517
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
518
+
519
+ if self.gradient_checkpointing and self.training:
520
+
521
+ def create_custom_forward(module):
522
+ def custom_forward(*inputs):
523
+ # None for past_key_value
524
+ return module(*inputs, output_attentions, None)
525
+
526
+ return custom_forward
527
+
528
+ layer_outputs = torch.utils.checkpoint.checkpoint(
529
+ create_custom_forward(decoder_layer),
530
+ hidden_states,
531
+ attention_mask,
532
+ position_ids,
533
+ None,
534
+ )
535
+ else:
536
+ layer_outputs = decoder_layer(
537
+ hidden_states,
538
+ attention_mask=attention_mask,
539
+ position_ids=position_ids,
540
+ past_key_value=past_key_value,
541
+ output_attentions=output_attentions,
542
+ use_cache=use_cache,
543
+ rotary_pos_emb=rotary_pos_emb,
544
+ )
545
+
546
+ hidden_states = layer_outputs[0]
547
+
548
+ if use_cache:
549
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
550
+
551
+ if output_attentions:
552
+ all_self_attns += (layer_outputs[1],)
553
+
554
+ hidden_states = self.final_layernorm(hidden_states)
555
+
556
+ # add hidden states from the last decoder layer
557
+ if output_hidden_states:
558
+ all_hidden_states += (hidden_states,)
559
+
560
+ next_cache = next_decoder_cache if use_cache else None
561
+ if not return_dict:
562
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
563
+ return BaseModelOutputWithPast(
564
+ last_hidden_state=hidden_states,
565
+ past_key_values=next_cache,
566
+ hidden_states=all_hidden_states,
567
+ attentions=all_self_attns,
568
+ )
569
+
570
+
571
+ class HawkForCausalLM(HawkPreTrainedModel):
572
+ _keys_to_ignore_on_load_missing = [r"model.rotary_pos_emb.inv_freq"]
573
+
574
+ def __init__(self, config):
575
+ super().__init__(config)
576
+ self.model = HawkModel(config)
577
+
578
+ self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
579
+
580
+ # Initialize weights and apply final processing
581
+ self.post_init()
582
+
583
+ def get_input_embeddings(self):
584
+ return self.model.word_embeddings
585
+
586
+ def set_input_embeddings(self, value):
587
+ self.model.word_embeddings = value
588
+
589
+ def get_output_embeddings(self):
590
+ return self.lm_head
591
+
592
+ def set_output_embeddings(self, new_embeddings):
593
+ self.lm_head = new_embeddings
594
+
595
+ def set_decoder(self, decoder):
596
+ self.model = decoder
597
+
598
+ def get_decoder(self):
599
+ return self.model
600
+
601
+ def forward(
602
+ self,
603
+ input_ids: torch.LongTensor = None,
604
+ attention_mask: Optional[torch.Tensor] = None,
605
+ position_ids: Optional[torch.LongTensor] = None,
606
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
607
+ inputs_embeds: Optional[torch.FloatTensor] = None,
608
+ labels: Optional[torch.LongTensor] = None,
609
+ use_cache: Optional[bool] = None,
610
+ output_attentions: Optional[bool] = None,
611
+ output_hidden_states: Optional[bool] = None,
612
+ return_dict: Optional[bool] = None,
613
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
614
+ r"""
615
+ Args:
616
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
617
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
618
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
619
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
620
+
621
+ Returns:
622
+
623
+ Example:
624
+
625
+ ```python
626
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
627
+
628
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
629
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
630
+
631
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
632
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
633
+
634
+ >>> # Generate
635
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
636
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
637
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
638
+ ```"""
639
+
640
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
641
+ output_hidden_states = (
642
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
643
+ )
644
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
645
+
646
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
647
+ outputs = self.model(
648
+ input_ids=input_ids,
649
+ attention_mask=attention_mask,
650
+ position_ids=position_ids,
651
+ past_key_values=past_key_values,
652
+ inputs_embeds=inputs_embeds,
653
+ use_cache=use_cache,
654
+ output_attentions=output_attentions,
655
+ output_hidden_states=output_hidden_states,
656
+ return_dict=return_dict,
657
+ )
658
+
659
+ hidden_states = outputs[0]
660
+
661
+ logits = self.lm_head(hidden_states)
662
+
663
+ loss = None
664
+ if labels is not None:
665
+ # Shift so that tokens < n predict n
666
+ shift_logits = logits[..., :-1, :].contiguous()
667
+ shift_labels = labels[..., 1:].contiguous()
668
+ # Flatten the tokens
669
+ loss_fct = torch.nn.CrossEntropyLoss()
670
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
671
+ shift_labels = shift_labels.view(-1)
672
+ # Enable model parallelism
673
+ shift_labels = shift_labels.to(shift_logits.device)
674
+ loss = loss_fct(shift_logits, shift_labels)
675
+
676
+ if not return_dict:
677
+ output = (logits,) + outputs[1:]
678
+ return (loss,) + output if loss is not None else output
679
+
680
+ return CausalLMOutputWithPast(
681
+ loss=loss,
682
+ logits=logits,
683
+ past_key_values=outputs.past_key_values,
684
+ hidden_states=outputs.hidden_states,
685
+ attentions=outputs.attentions,
686
+ )
687
+
688
+ def prepare_inputs_for_generation(
689
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
690
+ ):
691
+ if past_key_values:
692
+ input_ids = input_ids[:, -1:]
693
+
694
+ position_ids = kwargs.get("position_ids", None)
695
+ if attention_mask is not None and position_ids is None:
696
+ # create position_ids on the fly for batch generation
697
+ position_ids = attention_mask.long().cumsum(-1) - 1
698
+ position_ids.masked_fill_(attention_mask == 0, 1)
699
+ if past_key_values:
700
+ position_ids = position_ids[:, -1].unsqueeze(-1)
701
+
702
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
703
+ if inputs_embeds is not None and past_key_values is None:
704
+ model_inputs = {"inputs_embeds": inputs_embeds}
705
+ else:
706
+ model_inputs = {"input_ids": input_ids}
707
+
708
+ model_inputs.update(
709
+ {
710
+ "position_ids": position_ids,
711
+ "past_key_values": past_key_values,
712
+ "use_cache": kwargs.get("use_cache"),
713
+ "attention_mask": attention_mask,
714
+ }
715
+ )
716
+ return model_inputs
717
+
718
+ @staticmethod
719
+ def _reorder_cache(past_key_values, beam_idx):
720
+ reordered_past = ()
721
+ for layer_past in past_key_values:
722
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
723
+ return reordered_past
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11981b114885657fdb57dad152c13a735a01d748dccb4786e0055979c5e27081
3
+ size 982801364
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88dd68d61e4d84ce93c8498992d45aa0afe58c07ff3efb8c8a3f058435f11625
3
+ size 282171835
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 1264918528
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00002.bin",
7
+ "model.final_layernorm.bias": "pytorch_model-00002-of-00002.bin",
8
+ "model.final_layernorm.weight": "pytorch_model-00002-of-00002.bin",
9
+ "model.layers.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.11.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.12.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.13.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.14.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.14.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
62
+ "model.layers.14.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
63
+ "model.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.15.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
66
+ "model.layers.15.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
67
+ "model.layers.15.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
68
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
69
+ "model.layers.15.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
70
+ "model.layers.15.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
71
+ "model.layers.15.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
72
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
73
+ "model.layers.16.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
74
+ "model.layers.16.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
75
+ "model.layers.16.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
76
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
77
+ "model.layers.16.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
78
+ "model.layers.16.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
79
+ "model.layers.16.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
80
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
81
+ "model.layers.17.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
82
+ "model.layers.17.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
83
+ "model.layers.17.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
84
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
85
+ "model.layers.17.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
86
+ "model.layers.17.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
87
+ "model.layers.17.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
88
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
89
+ "model.layers.18.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
90
+ "model.layers.18.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
91
+ "model.layers.18.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
92
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
93
+ "model.layers.18.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
94
+ "model.layers.18.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
95
+ "model.layers.18.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
96
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
97
+ "model.layers.19.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
98
+ "model.layers.19.attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
99
+ "model.layers.19.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
100
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
101
+ "model.layers.19.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
102
+ "model.layers.19.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
103
+ "model.layers.19.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
104
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
105
+ "model.layers.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.2.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.2.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.3.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.3.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.4.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.4.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.5.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.5.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.6.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.6.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.7.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.7.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.8.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.8.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.9.attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.9.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.word_embeddings.weight": "pytorch_model-00001-of-00002.bin"
170
+ }
171
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenization_hawk.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for OpenAI GPT."""
16
+
17
+
18
+ import json
19
+ import os
20
+ from functools import lru_cache
21
+ from typing import TYPE_CHECKING, List, Optional, Tuple
22
+
23
+ import regex as re
24
+
25
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
26
+ from transformers.utils import logging
27
+
28
+
29
+ if TYPE_CHECKING:
30
+ from transformers.pipelines.conversational import Conversation
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {
35
+ "vocab_file": "vocab.json",
36
+ "merges_file": "merges.txt",
37
+ }
38
+
39
+ PRETRAINED_VOCAB_FILES_MAP = {
40
+ "vocab_file": {
41
+ "hawk-demo": "/path/to/hawk/vocab.json",
42
+ },
43
+ "merges_file": {
44
+ "hawk-demo": "/path/to/hawk/merges.txt",
45
+ },
46
+ }
47
+
48
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
49
+ "hawk-demo": 1024,
50
+ }
51
+
52
+
53
+ @lru_cache()
54
+ def bytes_to_unicode():
55
+ """
56
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
57
+ characters the bpe code barfs on.
58
+
59
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
60
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
61
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
62
+ tables between utf-8 bytes and unicode strings.
63
+ """
64
+ bs = (
65
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
66
+ )
67
+ cs = bs[:]
68
+ n = 0
69
+ for b in range(2**8):
70
+ if b not in bs:
71
+ bs.append(b)
72
+ cs.append(2**8 + n)
73
+ n += 1
74
+ cs = [chr(n) for n in cs]
75
+ return dict(zip(bs, cs))
76
+
77
+
78
+ def get_pairs(word):
79
+ """
80
+ Return set of symbol pairs in a word.
81
+
82
+ Word is represented as tuple of symbols (symbols being variable-length strings).
83
+ """
84
+ pairs = set()
85
+ prev_char = word[0]
86
+ for char in word[1:]:
87
+ pairs.add((prev_char, char))
88
+ prev_char = char
89
+ return pairs
90
+
91
+
92
+ class HawkTokenizer(PreTrainedTokenizer):
93
+ """
94
+ TODO NEED TO EXPAND
95
+ """
96
+
97
+ vocab_files_names = VOCAB_FILES_NAMES
98
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
99
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
100
+ model_input_names = ["input_ids", "attention_mask"]
101
+
102
+ def __init__(
103
+ self,
104
+ vocab_file,
105
+ merges_file,
106
+ errors="replace",
107
+ unk_token="<unk>",
108
+ bos_token="<s>",
109
+ eos_token="</s>",
110
+ pad_token="<pad>",
111
+ add_prefix_space=False,
112
+ add_bos_token=False,
113
+ **kwargs,
114
+ ):
115
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
116
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
117
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
118
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
119
+ super().__init__(
120
+ errors=errors,
121
+ unk_token=unk_token,
122
+ bos_token=bos_token,
123
+ eos_token=eos_token,
124
+ pad_token=pad_token,
125
+ add_prefix_space=add_prefix_space,
126
+ add_bos_token=add_bos_token,
127
+ **kwargs,
128
+ )
129
+ self.add_bos_token = add_bos_token
130
+
131
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
132
+ self.encoder = json.load(vocab_handle)
133
+ self.decoder = {v: k for k, v in self.encoder.items()}
134
+ self.errors = errors # how to handle errors in decoding
135
+ self.byte_encoder = bytes_to_unicode()
136
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
137
+ with open(merges_file, encoding="utf-8") as merges_handle:
138
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
139
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
140
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
141
+ self.cache = {}
142
+ self.add_prefix_space = add_prefix_space
143
+
144
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
145
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
146
+
147
+ @property
148
+ def vocab_size(self):
149
+ return len(self.encoder)
150
+
151
+ def get_vocab(self):
152
+ return dict(self.encoder, **self.added_tokens_encoder)
153
+
154
+ def bpe(self, token):
155
+ if token in self.cache:
156
+ return self.cache[token]
157
+ word = tuple(token)
158
+ pairs = get_pairs(word)
159
+
160
+ if not pairs:
161
+ return token
162
+
163
+ while True:
164
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
165
+ if bigram not in self.bpe_ranks:
166
+ break
167
+ first, second = bigram
168
+ new_word = []
169
+ i = 0
170
+ while i < len(word):
171
+ try:
172
+ j = word.index(first, i)
173
+ except ValueError:
174
+ new_word.extend(word[i:])
175
+ break
176
+ else:
177
+ new_word.extend(word[i:j])
178
+ i = j
179
+
180
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
181
+ new_word.append(first + second)
182
+ i += 2
183
+ else:
184
+ new_word.append(word[i])
185
+ i += 1
186
+ new_word = tuple(new_word)
187
+ word = new_word
188
+ if len(word) == 1:
189
+ break
190
+ else:
191
+ pairs = get_pairs(word)
192
+ word = " ".join(word)
193
+ self.cache[token] = word
194
+ return word
195
+
196
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
197
+ if self.add_bos_token:
198
+ bos_token_ids = [self.bos_token_id]
199
+ else:
200
+ bos_token_ids = []
201
+
202
+ output = bos_token_ids + token_ids_0
203
+
204
+ if token_ids_1 is None:
205
+ return output
206
+
207
+ return output + bos_token_ids + token_ids_1
208
+
209
+ def get_special_tokens_mask(
210
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
211
+ ) -> List[int]:
212
+ """
213
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
214
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
215
+
216
+ Args:
217
+ token_ids_0 (`List[int]`):
218
+ List of IDs.
219
+ token_ids_1 (`List[int]`, *optional*):
220
+ Optional second list of IDs for sequence pairs.
221
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
222
+ Whether or not the token list is already formatted with special tokens for the model.
223
+
224
+ Returns:
225
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
226
+ """
227
+ if already_has_special_tokens:
228
+ return super().get_special_tokens_mask(
229
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
230
+ )
231
+
232
+ if not self.add_bos_token:
233
+ return super().get_special_tokens_mask(
234
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
235
+ )
236
+
237
+ if token_ids_1 is None:
238
+ return [1] + ([0] * len(token_ids_0))
239
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
240
+
241
+ def _tokenize(self, text):
242
+ """Tokenize a string."""
243
+ bpe_tokens = []
244
+ for token in re.findall(self.pat, text):
245
+ token = "".join(
246
+ self.byte_encoder[b] for b in token.encode("utf-8")
247
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
248
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
249
+ return bpe_tokens
250
+
251
+ def _convert_token_to_id(self, token):
252
+ """Converts a token (str) in an id using the vocab."""
253
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
254
+
255
+ def _convert_id_to_token(self, index):
256
+ """Converts an index (integer) in a token (str) using the vocab."""
257
+ return self.decoder.get(index)
258
+
259
+ def convert_tokens_to_string(self, tokens):
260
+ """Converts a sequence of tokens (string) in a single string."""
261
+ text = "".join(tokens)
262
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
263
+ return text
264
+
265
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
266
+ if not os.path.isdir(save_directory):
267
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
268
+ return
269
+ vocab_file = os.path.join(
270
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
271
+ )
272
+ merge_file = os.path.join(
273
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
274
+ )
275
+
276
+ with open(vocab_file, "w", encoding="utf-8") as f:
277
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
278
+
279
+ index = 0
280
+ with open(merge_file, "w", encoding="utf-8") as writer:
281
+ writer.write("#version: 0.2\n")
282
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
283
+ if index != token_index:
284
+ logger.warning(
285
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
286
+ " Please check that the tokenizer is not corrupted!"
287
+ )
288
+ index = token_index
289
+ writer.write(" ".join(bpe_tokens) + "\n")
290
+ index += 1
291
+
292
+ return vocab_file, merge_file
293
+
294
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
295
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
296
+ if is_split_into_words or add_prefix_space:
297
+ text = " " + text
298
+ return (text, kwargs)
299
+
300
+ def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
301
+ input_ids = []
302
+ for is_user, text in conversation.iter_texts():
303
+ input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
304
+ if len(input_ids) > self.model_max_length:
305
+ input_ids = input_ids[-self.model_max_length :]
306
+ return input_ids
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_hawk.HawkTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "clean_up_tokenization_spaces": true,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "errors": "replace",
28
+ "model_max_length": 1000000000000000019884624838656,
29
+ "pad_token": {
30
+ "__type": "AddedToken",
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "tokenizer_class": "HawkTokenizer",
38
+ "unk_token": {
39
+ "__type": "AddedToken",
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": true,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ }
46
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff