Upload 2 files
Browse files- co_dino_5scale_swin_l_16xb1_1x_coco.py +862 -0
- epoch_12.pth +3 -0
co_dino_5scale_swin_l_16xb1_1x_coco.py
ADDED
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
auto_scale_lr = dict(base_batch_size=16)
|
2 |
+
backend_args = None
|
3 |
+
batch_augments = [
|
4 |
+
dict(size=(
|
5 |
+
1024,
|
6 |
+
1024,
|
7 |
+
), type='BatchFixedSizePad'),
|
8 |
+
]
|
9 |
+
classes = 'license_plate'
|
10 |
+
custom_imports = dict(
|
11 |
+
allow_failed_imports=False, imports=[
|
12 |
+
'projects.CO-DETR.codetr',
|
13 |
+
])
|
14 |
+
data_root = '/home/worawit.tepsan/Project_AI/Detection/data'
|
15 |
+
dataset_type = 'CocoDataset'
|
16 |
+
default_hooks = dict(
|
17 |
+
checkpoint=dict(
|
18 |
+
_scope_='mmdet',
|
19 |
+
by_epoch=True,
|
20 |
+
interval=1,
|
21 |
+
max_keep_ckpts=3,
|
22 |
+
type='CheckpointHook'),
|
23 |
+
logger=dict(_scope_='mmdet', interval=50, type='LoggerHook'),
|
24 |
+
param_scheduler=dict(_scope_='mmdet', type='ParamSchedulerHook'),
|
25 |
+
sampler_seed=dict(_scope_='mmdet', type='DistSamplerSeedHook'),
|
26 |
+
timer=dict(_scope_='mmdet', type='IterTimerHook'),
|
27 |
+
visualization=dict(
|
28 |
+
_scope_='mmdet',
|
29 |
+
draw=True,
|
30 |
+
test_out_dir=
|
31 |
+
'/home/worawit.tepsan/Project_AI/Detection/data_testing_LPR',
|
32 |
+
type='DetVisualizationHook'))
|
33 |
+
default_scope = 'mmdet'
|
34 |
+
env_cfg = dict(
|
35 |
+
cudnn_benchmark=False,
|
36 |
+
dist_cfg=dict(backend='nccl'),
|
37 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
38 |
+
image_size = (
|
39 |
+
1024,
|
40 |
+
1024,
|
41 |
+
)
|
42 |
+
launcher = 'slurm'
|
43 |
+
load_from = '/home/worawit.tepsan/Project_AI/Detection/object_detection/workdir/epoch_13.pth'
|
44 |
+
load_pipeline = [
|
45 |
+
dict(type='LoadImageFromFile'),
|
46 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
47 |
+
dict(
|
48 |
+
keep_ratio=True,
|
49 |
+
ratio_range=(
|
50 |
+
0.1,
|
51 |
+
2.0,
|
52 |
+
),
|
53 |
+
scale=(
|
54 |
+
1024,
|
55 |
+
1024,
|
56 |
+
),
|
57 |
+
type='RandomResize'),
|
58 |
+
dict(
|
59 |
+
allow_negative_crop=True,
|
60 |
+
crop_size=(
|
61 |
+
1024,
|
62 |
+
1024,
|
63 |
+
),
|
64 |
+
crop_type='absolute_range',
|
65 |
+
recompute_bbox=True,
|
66 |
+
type='RandomCrop'),
|
67 |
+
dict(min_gt_bbox_wh=(
|
68 |
+
0.01,
|
69 |
+
0.01,
|
70 |
+
), type='FilterAnnotations'),
|
71 |
+
dict(prob=0.5, type='RandomFlip'),
|
72 |
+
dict(pad_val=dict(img=(
|
73 |
+
114,
|
74 |
+
114,
|
75 |
+
114,
|
76 |
+
)), size=(
|
77 |
+
1024,
|
78 |
+
1024,
|
79 |
+
), type='Pad'),
|
80 |
+
]
|
81 |
+
log_level = 'INFO'
|
82 |
+
log_processor = dict(
|
83 |
+
_scope_='mmdet', by_epoch=True, type='LogProcessor', window_size=50)
|
84 |
+
loss_lambda = 2.0
|
85 |
+
max_epochs = 32
|
86 |
+
max_iters = 270000
|
87 |
+
metainfo = dict(classes='license_plate')
|
88 |
+
model = dict(
|
89 |
+
backbone=dict(
|
90 |
+
attn_drop_rate=0.0,
|
91 |
+
convert_weights=True,
|
92 |
+
depths=[
|
93 |
+
2,
|
94 |
+
2,
|
95 |
+
18,
|
96 |
+
2,
|
97 |
+
],
|
98 |
+
drop_path_rate=0.3,
|
99 |
+
drop_rate=0.0,
|
100 |
+
embed_dims=192,
|
101 |
+
init_cfg=dict(
|
102 |
+
checkpoint=
|
103 |
+
'/home/worawit.tepsan/Project_AI/Detection/pretrained_models/swin_large_patch4_window12_384_22k.pth',
|
104 |
+
type='Pretrained'),
|
105 |
+
mlp_ratio=4,
|
106 |
+
num_heads=[
|
107 |
+
6,
|
108 |
+
12,
|
109 |
+
24,
|
110 |
+
48,
|
111 |
+
],
|
112 |
+
out_indices=(
|
113 |
+
0,
|
114 |
+
1,
|
115 |
+
2,
|
116 |
+
3,
|
117 |
+
),
|
118 |
+
patch_norm=True,
|
119 |
+
pretrain_img_size=384,
|
120 |
+
qk_scale=None,
|
121 |
+
qkv_bias=True,
|
122 |
+
type='SwinTransformer',
|
123 |
+
window_size=12,
|
124 |
+
with_cp=False),
|
125 |
+
bbox_head=[
|
126 |
+
dict(
|
127 |
+
anchor_generator=dict(
|
128 |
+
octave_base_scale=8,
|
129 |
+
ratios=[
|
130 |
+
1.0,
|
131 |
+
],
|
132 |
+
scales_per_octave=1,
|
133 |
+
strides=[
|
134 |
+
4,
|
135 |
+
8,
|
136 |
+
16,
|
137 |
+
32,
|
138 |
+
64,
|
139 |
+
128,
|
140 |
+
],
|
141 |
+
type='AnchorGenerator'),
|
142 |
+
bbox_coder=dict(
|
143 |
+
target_means=[
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
],
|
149 |
+
target_stds=[
|
150 |
+
0.1,
|
151 |
+
0.1,
|
152 |
+
0.2,
|
153 |
+
0.2,
|
154 |
+
],
|
155 |
+
type='DeltaXYWHBBoxCoder'),
|
156 |
+
feat_channels=256,
|
157 |
+
in_channels=256,
|
158 |
+
loss_bbox=dict(loss_weight=24.0, type='GIoULoss'),
|
159 |
+
loss_centerness=dict(
|
160 |
+
loss_weight=12.0, type='CrossEntropyLoss', use_sigmoid=True),
|
161 |
+
loss_cls=dict(
|
162 |
+
alpha=0.25,
|
163 |
+
gamma=2.0,
|
164 |
+
loss_weight=12.0,
|
165 |
+
type='FocalLoss',
|
166 |
+
use_sigmoid=True),
|
167 |
+
num_classes=1,
|
168 |
+
stacked_convs=1,
|
169 |
+
type='CoATSSHead'),
|
170 |
+
],
|
171 |
+
data_preprocessor=dict(
|
172 |
+
batch_augments=None,
|
173 |
+
bgr_to_rgb=True,
|
174 |
+
mean=[
|
175 |
+
123.675,
|
176 |
+
116.28,
|
177 |
+
103.53,
|
178 |
+
],
|
179 |
+
pad_mask=False,
|
180 |
+
std=[
|
181 |
+
58.395,
|
182 |
+
57.12,
|
183 |
+
57.375,
|
184 |
+
],
|
185 |
+
type='DetDataPreprocessor'),
|
186 |
+
eval_module='detr',
|
187 |
+
neck=dict(
|
188 |
+
act_cfg=None,
|
189 |
+
in_channels=[
|
190 |
+
192,
|
191 |
+
384,
|
192 |
+
768,
|
193 |
+
1536,
|
194 |
+
],
|
195 |
+
kernel_size=1,
|
196 |
+
norm_cfg=dict(num_groups=32, type='GN'),
|
197 |
+
num_outs=5,
|
198 |
+
out_channels=256,
|
199 |
+
type='ChannelMapper'),
|
200 |
+
query_head=dict(
|
201 |
+
as_two_stage=True,
|
202 |
+
dn_cfg=dict(
|
203 |
+
box_noise_scale=1.0,
|
204 |
+
group_cfg=dict(dynamic=True, num_dn_queries=100, num_groups=None),
|
205 |
+
label_noise_scale=0.5),
|
206 |
+
in_channels=2048,
|
207 |
+
loss_bbox=dict(loss_weight=5.0, type='L1Loss'),
|
208 |
+
loss_cls=dict(
|
209 |
+
beta=2.0,
|
210 |
+
loss_weight=1.0,
|
211 |
+
type='QualityFocalLoss',
|
212 |
+
use_sigmoid=True),
|
213 |
+
loss_iou=dict(loss_weight=2.0, type='GIoULoss'),
|
214 |
+
num_classes=1,
|
215 |
+
num_query=900,
|
216 |
+
positional_encoding=dict(
|
217 |
+
normalize=True,
|
218 |
+
num_feats=128,
|
219 |
+
temperature=20,
|
220 |
+
type='SinePositionalEncoding'),
|
221 |
+
transformer=dict(
|
222 |
+
decoder=dict(
|
223 |
+
num_layers=6,
|
224 |
+
return_intermediate=True,
|
225 |
+
transformerlayers=dict(
|
226 |
+
attn_cfgs=[
|
227 |
+
dict(
|
228 |
+
dropout=0.0,
|
229 |
+
embed_dims=256,
|
230 |
+
num_heads=8,
|
231 |
+
type='MultiheadAttention'),
|
232 |
+
dict(
|
233 |
+
dropout=0.0,
|
234 |
+
embed_dims=256,
|
235 |
+
num_levels=5,
|
236 |
+
type='MultiScaleDeformableAttention'),
|
237 |
+
],
|
238 |
+
feedforward_channels=2048,
|
239 |
+
ffn_dropout=0.0,
|
240 |
+
operation_order=(
|
241 |
+
'self_attn',
|
242 |
+
'norm',
|
243 |
+
'cross_attn',
|
244 |
+
'norm',
|
245 |
+
'ffn',
|
246 |
+
'norm',
|
247 |
+
),
|
248 |
+
type='DetrTransformerDecoderLayer'),
|
249 |
+
type='DinoTransformerDecoder'),
|
250 |
+
encoder=dict(
|
251 |
+
num_layers=6,
|
252 |
+
transformerlayers=dict(
|
253 |
+
attn_cfgs=dict(
|
254 |
+
dropout=0.0,
|
255 |
+
embed_dims=256,
|
256 |
+
num_levels=5,
|
257 |
+
type='MultiScaleDeformableAttention'),
|
258 |
+
feedforward_channels=2048,
|
259 |
+
ffn_dropout=0.0,
|
260 |
+
operation_order=(
|
261 |
+
'self_attn',
|
262 |
+
'norm',
|
263 |
+
'ffn',
|
264 |
+
'norm',
|
265 |
+
),
|
266 |
+
type='BaseTransformerLayer'),
|
267 |
+
type='DetrTransformerEncoder',
|
268 |
+
with_cp=6),
|
269 |
+
num_co_heads=2,
|
270 |
+
num_feature_levels=5,
|
271 |
+
type='CoDinoTransformer',
|
272 |
+
with_coord_feat=False),
|
273 |
+
type='CoDINOHead'),
|
274 |
+
roi_head=[
|
275 |
+
dict(
|
276 |
+
bbox_head=dict(
|
277 |
+
bbox_coder=dict(
|
278 |
+
target_means=[
|
279 |
+
0.0,
|
280 |
+
0.0,
|
281 |
+
0.0,
|
282 |
+
0.0,
|
283 |
+
],
|
284 |
+
target_stds=[
|
285 |
+
0.1,
|
286 |
+
0.1,
|
287 |
+
0.2,
|
288 |
+
0.2,
|
289 |
+
],
|
290 |
+
type='DeltaXYWHBBoxCoder'),
|
291 |
+
fc_out_channels=1024,
|
292 |
+
in_channels=256,
|
293 |
+
loss_bbox=dict(loss_weight=120.0, type='GIoULoss'),
|
294 |
+
loss_cls=dict(
|
295 |
+
loss_weight=12.0,
|
296 |
+
type='CrossEntropyLoss',
|
297 |
+
use_sigmoid=False),
|
298 |
+
num_classes=1,
|
299 |
+
reg_class_agnostic=False,
|
300 |
+
reg_decoded_bbox=True,
|
301 |
+
roi_feat_size=7,
|
302 |
+
type='Shared2FCBBoxHead'),
|
303 |
+
bbox_roi_extractor=dict(
|
304 |
+
featmap_strides=[
|
305 |
+
4,
|
306 |
+
8,
|
307 |
+
16,
|
308 |
+
32,
|
309 |
+
64,
|
310 |
+
],
|
311 |
+
finest_scale=56,
|
312 |
+
out_channels=256,
|
313 |
+
roi_layer=dict(
|
314 |
+
output_size=7, sampling_ratio=0, type='RoIAlign'),
|
315 |
+
type='SingleRoIExtractor'),
|
316 |
+
type='CoStandardRoIHead'),
|
317 |
+
],
|
318 |
+
rpn_head=dict(
|
319 |
+
anchor_generator=dict(
|
320 |
+
octave_base_scale=4,
|
321 |
+
ratios=[
|
322 |
+
0.5,
|
323 |
+
1.0,
|
324 |
+
2.0,
|
325 |
+
],
|
326 |
+
scales_per_octave=3,
|
327 |
+
strides=[
|
328 |
+
4,
|
329 |
+
8,
|
330 |
+
16,
|
331 |
+
32,
|
332 |
+
64,
|
333 |
+
128,
|
334 |
+
],
|
335 |
+
type='AnchorGenerator'),
|
336 |
+
bbox_coder=dict(
|
337 |
+
target_means=[
|
338 |
+
0.0,
|
339 |
+
0.0,
|
340 |
+
0.0,
|
341 |
+
0.0,
|
342 |
+
],
|
343 |
+
target_stds=[
|
344 |
+
1.0,
|
345 |
+
1.0,
|
346 |
+
1.0,
|
347 |
+
1.0,
|
348 |
+
],
|
349 |
+
type='DeltaXYWHBBoxCoder'),
|
350 |
+
feat_channels=256,
|
351 |
+
in_channels=256,
|
352 |
+
loss_bbox=dict(loss_weight=12.0, type='L1Loss'),
|
353 |
+
loss_cls=dict(
|
354 |
+
loss_weight=12.0, type='CrossEntropyLoss', use_sigmoid=True),
|
355 |
+
type='RPNHead'),
|
356 |
+
test_cfg=[
|
357 |
+
dict(max_per_img=300, nms=dict(iou_threshold=0.8, type='soft_nms')),
|
358 |
+
dict(
|
359 |
+
rcnn=dict(
|
360 |
+
max_per_img=100,
|
361 |
+
nms=dict(iou_threshold=0.5, type='nms'),
|
362 |
+
score_thr=0.0),
|
363 |
+
rpn=dict(
|
364 |
+
max_per_img=1000,
|
365 |
+
min_bbox_size=0,
|
366 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
367 |
+
nms_pre=1000)),
|
368 |
+
dict(
|
369 |
+
max_per_img=100,
|
370 |
+
min_bbox_size=0,
|
371 |
+
nms=dict(iou_threshold=0.6, type='nms'),
|
372 |
+
nms_pre=1000,
|
373 |
+
score_thr=0.0),
|
374 |
+
],
|
375 |
+
train_cfg=[
|
376 |
+
dict(
|
377 |
+
assigner=dict(
|
378 |
+
match_costs=[
|
379 |
+
dict(type='FocalLossCost', weight=2.0),
|
380 |
+
dict(box_format='xywh', type='BBoxL1Cost', weight=5.0),
|
381 |
+
dict(iou_mode='giou', type='IoUCost', weight=2.0),
|
382 |
+
],
|
383 |
+
type='HungarianAssigner')),
|
384 |
+
dict(
|
385 |
+
rcnn=dict(
|
386 |
+
assigner=dict(
|
387 |
+
ignore_iof_thr=-1,
|
388 |
+
match_low_quality=False,
|
389 |
+
min_pos_iou=0.5,
|
390 |
+
neg_iou_thr=0.5,
|
391 |
+
pos_iou_thr=0.5,
|
392 |
+
type='MaxIoUAssigner'),
|
393 |
+
debug=False,
|
394 |
+
pos_weight=-1,
|
395 |
+
sampler=dict(
|
396 |
+
add_gt_as_proposals=True,
|
397 |
+
neg_pos_ub=-1,
|
398 |
+
num=512,
|
399 |
+
pos_fraction=0.25,
|
400 |
+
type='RandomSampler')),
|
401 |
+
rpn=dict(
|
402 |
+
allowed_border=-1,
|
403 |
+
assigner=dict(
|
404 |
+
ignore_iof_thr=-1,
|
405 |
+
match_low_quality=True,
|
406 |
+
min_pos_iou=0.3,
|
407 |
+
neg_iou_thr=0.3,
|
408 |
+
pos_iou_thr=0.7,
|
409 |
+
type='MaxIoUAssigner'),
|
410 |
+
debug=False,
|
411 |
+
pos_weight=-1,
|
412 |
+
sampler=dict(
|
413 |
+
add_gt_as_proposals=False,
|
414 |
+
neg_pos_ub=-1,
|
415 |
+
num=256,
|
416 |
+
pos_fraction=0.5,
|
417 |
+
type='RandomSampler')),
|
418 |
+
rpn_proposal=dict(
|
419 |
+
max_per_img=1000,
|
420 |
+
min_bbox_size=0,
|
421 |
+
nms=dict(iou_threshold=0.7, type='nms'),
|
422 |
+
nms_pre=4000)),
|
423 |
+
dict(
|
424 |
+
allowed_border=-1,
|
425 |
+
assigner=dict(topk=9, type='ATSSAssigner'),
|
426 |
+
debug=False,
|
427 |
+
pos_weight=-1),
|
428 |
+
],
|
429 |
+
type='CoDETR',
|
430 |
+
use_lsj=False)
|
431 |
+
num_classes = 1
|
432 |
+
num_dec_layer = 6
|
433 |
+
optim_wrapper = dict(
|
434 |
+
clip_grad=dict(max_norm=0.1, norm_type=2),
|
435 |
+
optimizer=dict(lr=0.0002, type='AdamW', weight_decay=0.0001),
|
436 |
+
paramwise_cfg=dict(custom_keys=dict(backbone=dict(lr_mult=0.1))),
|
437 |
+
type='OptimWrapper')
|
438 |
+
param_scheduler = [
|
439 |
+
dict(
|
440 |
+
begin=0,
|
441 |
+
by_epoch=True,
|
442 |
+
end=12,
|
443 |
+
gamma=0.1,
|
444 |
+
milestones=[
|
445 |
+
11,
|
446 |
+
],
|
447 |
+
type='MultiStepLR'),
|
448 |
+
]
|
449 |
+
pretrained = '/home/worawit.tepsan/Project_AI/Detection/pretrained_models/swin_large_patch4_window12_384_22k.pth'
|
450 |
+
resume = False
|
451 |
+
test_cfg = dict(_scope_='mmdet', type='TestLoop')
|
452 |
+
test_dataloader = dict(
|
453 |
+
batch_size=2,
|
454 |
+
dataset=dict(
|
455 |
+
_scope_='mmdet',
|
456 |
+
ann_file='annotations/instances_test.json',
|
457 |
+
data_prefix=dict(img='test/'),
|
458 |
+
data_root='/home/worawit.tepsan/Project_AI/Detection/data',
|
459 |
+
metainfo=dict(classes='license_plate'),
|
460 |
+
pipeline=[
|
461 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
462 |
+
dict(keep_ratio=True, scale=(
|
463 |
+
1333,
|
464 |
+
800,
|
465 |
+
), type='Resize'),
|
466 |
+
dict(
|
467 |
+
meta_keys=(
|
468 |
+
'img_id',
|
469 |
+
'img_path',
|
470 |
+
'ori_shape',
|
471 |
+
'img_shape',
|
472 |
+
'scale_factor',
|
473 |
+
),
|
474 |
+
type='PackDetInputs'),
|
475 |
+
],
|
476 |
+
test_mode=True,
|
477 |
+
type='CocoDataset'),
|
478 |
+
drop_last=False,
|
479 |
+
num_workers=8,
|
480 |
+
persistent_workers=True,
|
481 |
+
sampler=dict(_scope_='mmdet', shuffle=False, type='DefaultSampler'))
|
482 |
+
test_evaluator = dict(
|
483 |
+
_scope_='mmdet',
|
484 |
+
ann_file='annotations/instances_test.json',
|
485 |
+
format_only=False,
|
486 |
+
metric='bbox',
|
487 |
+
outfile_prefix=
|
488 |
+
'/home/worawit.tepsan/Project_AI/Detection/object_detection/workdir/coco_detection/test',
|
489 |
+
type='CocoMetric')
|
490 |
+
test_pipeline = [
|
491 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
492 |
+
dict(keep_ratio=True, scale=(
|
493 |
+
1333,
|
494 |
+
800,
|
495 |
+
), type='Resize'),
|
496 |
+
dict(
|
497 |
+
meta_keys=(
|
498 |
+
'img_id',
|
499 |
+
'img_path',
|
500 |
+
'ori_shape',
|
501 |
+
'img_shape',
|
502 |
+
'scale_factor',
|
503 |
+
),
|
504 |
+
type='PackDetInputs'),
|
505 |
+
]
|
506 |
+
train_cfg = dict(max_epochs=32, type='EpochBasedTrainLoop', val_interval=1)
|
507 |
+
train_dataloader = dict(
|
508 |
+
batch_size=2,
|
509 |
+
dataset=dict(
|
510 |
+
ann_file='annotations/instances_train.json',
|
511 |
+
backend_args=None,
|
512 |
+
data_prefix=dict(img='train/'),
|
513 |
+
data_root='/home/worawit.tepsan/Project_AI/Detection/data',
|
514 |
+
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
515 |
+
metainfo=dict(classes='license_plate'),
|
516 |
+
pipeline=[
|
517 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
518 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
519 |
+
dict(prob=0.5, type='RandomFlip'),
|
520 |
+
dict(
|
521 |
+
transforms=[
|
522 |
+
[
|
523 |
+
dict(
|
524 |
+
keep_ratio=True,
|
525 |
+
scales=[
|
526 |
+
(
|
527 |
+
480,
|
528 |
+
1333,
|
529 |
+
),
|
530 |
+
(
|
531 |
+
512,
|
532 |
+
1333,
|
533 |
+
),
|
534 |
+
(
|
535 |
+
544,
|
536 |
+
1333,
|
537 |
+
),
|
538 |
+
(
|
539 |
+
576,
|
540 |
+
1333,
|
541 |
+
),
|
542 |
+
(
|
543 |
+
608,
|
544 |
+
1333,
|
545 |
+
),
|
546 |
+
(
|
547 |
+
640,
|
548 |
+
1333,
|
549 |
+
),
|
550 |
+
(
|
551 |
+
672,
|
552 |
+
1333,
|
553 |
+
),
|
554 |
+
(
|
555 |
+
704,
|
556 |
+
1333,
|
557 |
+
),
|
558 |
+
(
|
559 |
+
736,
|
560 |
+
1333,
|
561 |
+
),
|
562 |
+
(
|
563 |
+
768,
|
564 |
+
1333,
|
565 |
+
),
|
566 |
+
(
|
567 |
+
800,
|
568 |
+
1333,
|
569 |
+
),
|
570 |
+
],
|
571 |
+
type='RandomChoiceResize'),
|
572 |
+
],
|
573 |
+
[
|
574 |
+
dict(
|
575 |
+
keep_ratio=True,
|
576 |
+
scales=[
|
577 |
+
(
|
578 |
+
400,
|
579 |
+
4200,
|
580 |
+
),
|
581 |
+
(
|
582 |
+
500,
|
583 |
+
4200,
|
584 |
+
),
|
585 |
+
(
|
586 |
+
600,
|
587 |
+
4200,
|
588 |
+
),
|
589 |
+
],
|
590 |
+
type='RandomChoiceResize'),
|
591 |
+
dict(
|
592 |
+
allow_negative_crop=True,
|
593 |
+
crop_size=(
|
594 |
+
384,
|
595 |
+
600,
|
596 |
+
),
|
597 |
+
crop_type='absolute_range',
|
598 |
+
type='RandomCrop'),
|
599 |
+
dict(
|
600 |
+
keep_ratio=True,
|
601 |
+
scales=[
|
602 |
+
(
|
603 |
+
480,
|
604 |
+
1333,
|
605 |
+
),
|
606 |
+
(
|
607 |
+
512,
|
608 |
+
1333,
|
609 |
+
),
|
610 |
+
(
|
611 |
+
544,
|
612 |
+
1333,
|
613 |
+
),
|
614 |
+
(
|
615 |
+
576,
|
616 |
+
1333,
|
617 |
+
),
|
618 |
+
(
|
619 |
+
608,
|
620 |
+
1333,
|
621 |
+
),
|
622 |
+
(
|
623 |
+
640,
|
624 |
+
1333,
|
625 |
+
),
|
626 |
+
(
|
627 |
+
672,
|
628 |
+
1333,
|
629 |
+
),
|
630 |
+
(
|
631 |
+
704,
|
632 |
+
1333,
|
633 |
+
),
|
634 |
+
(
|
635 |
+
736,
|
636 |
+
1333,
|
637 |
+
),
|
638 |
+
(
|
639 |
+
768,
|
640 |
+
1333,
|
641 |
+
),
|
642 |
+
(
|
643 |
+
800,
|
644 |
+
1333,
|
645 |
+
),
|
646 |
+
],
|
647 |
+
type='RandomChoiceResize'),
|
648 |
+
],
|
649 |
+
],
|
650 |
+
type='RandomChoice'),
|
651 |
+
dict(type='PackDetInputs'),
|
652 |
+
],
|
653 |
+
type='CocoDataset'),
|
654 |
+
num_workers=2,
|
655 |
+
persistent_workers=True,
|
656 |
+
sampler=dict(_scope_='mmdet', shuffle=True, type='DefaultSampler'))
|
657 |
+
train_pipeline = [
|
658 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
659 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
660 |
+
dict(prob=0.5, type='RandomFlip'),
|
661 |
+
dict(
|
662 |
+
transforms=[
|
663 |
+
[
|
664 |
+
dict(
|
665 |
+
keep_ratio=True,
|
666 |
+
scales=[
|
667 |
+
(
|
668 |
+
480,
|
669 |
+
1333,
|
670 |
+
),
|
671 |
+
(
|
672 |
+
512,
|
673 |
+
1333,
|
674 |
+
),
|
675 |
+
(
|
676 |
+
544,
|
677 |
+
1333,
|
678 |
+
),
|
679 |
+
(
|
680 |
+
576,
|
681 |
+
1333,
|
682 |
+
),
|
683 |
+
(
|
684 |
+
608,
|
685 |
+
1333,
|
686 |
+
),
|
687 |
+
(
|
688 |
+
640,
|
689 |
+
1333,
|
690 |
+
),
|
691 |
+
(
|
692 |
+
672,
|
693 |
+
1333,
|
694 |
+
),
|
695 |
+
(
|
696 |
+
704,
|
697 |
+
1333,
|
698 |
+
),
|
699 |
+
(
|
700 |
+
736,
|
701 |
+
1333,
|
702 |
+
),
|
703 |
+
(
|
704 |
+
768,
|
705 |
+
1333,
|
706 |
+
),
|
707 |
+
(
|
708 |
+
800,
|
709 |
+
1333,
|
710 |
+
),
|
711 |
+
],
|
712 |
+
type='RandomChoiceResize'),
|
713 |
+
],
|
714 |
+
[
|
715 |
+
dict(
|
716 |
+
keep_ratio=True,
|
717 |
+
scales=[
|
718 |
+
(
|
719 |
+
400,
|
720 |
+
4200,
|
721 |
+
),
|
722 |
+
(
|
723 |
+
500,
|
724 |
+
4200,
|
725 |
+
),
|
726 |
+
(
|
727 |
+
600,
|
728 |
+
4200,
|
729 |
+
),
|
730 |
+
],
|
731 |
+
type='RandomChoiceResize'),
|
732 |
+
dict(
|
733 |
+
allow_negative_crop=True,
|
734 |
+
crop_size=(
|
735 |
+
384,
|
736 |
+
600,
|
737 |
+
),
|
738 |
+
crop_type='absolute_range',
|
739 |
+
type='RandomCrop'),
|
740 |
+
dict(
|
741 |
+
keep_ratio=True,
|
742 |
+
scales=[
|
743 |
+
(
|
744 |
+
480,
|
745 |
+
1333,
|
746 |
+
),
|
747 |
+
(
|
748 |
+
512,
|
749 |
+
1333,
|
750 |
+
),
|
751 |
+
(
|
752 |
+
544,
|
753 |
+
1333,
|
754 |
+
),
|
755 |
+
(
|
756 |
+
576,
|
757 |
+
1333,
|
758 |
+
),
|
759 |
+
(
|
760 |
+
608,
|
761 |
+
1333,
|
762 |
+
),
|
763 |
+
(
|
764 |
+
640,
|
765 |
+
1333,
|
766 |
+
),
|
767 |
+
(
|
768 |
+
672,
|
769 |
+
1333,
|
770 |
+
),
|
771 |
+
(
|
772 |
+
704,
|
773 |
+
1333,
|
774 |
+
),
|
775 |
+
(
|
776 |
+
736,
|
777 |
+
1333,
|
778 |
+
),
|
779 |
+
(
|
780 |
+
768,
|
781 |
+
1333,
|
782 |
+
),
|
783 |
+
(
|
784 |
+
800,
|
785 |
+
1333,
|
786 |
+
),
|
787 |
+
],
|
788 |
+
type='RandomChoiceResize'),
|
789 |
+
],
|
790 |
+
],
|
791 |
+
type='RandomChoice'),
|
792 |
+
dict(type='PackDetInputs'),
|
793 |
+
]
|
794 |
+
val_cfg = dict(_scope_='mmdet', type='ValLoop')
|
795 |
+
val_dataloader = dict(
|
796 |
+
batch_size=2,
|
797 |
+
dataset=dict(
|
798 |
+
_scope_='mmdet',
|
799 |
+
ann_file='annotations/instances_val.json',
|
800 |
+
backend_args=None,
|
801 |
+
data_prefix=dict(img='val/'),
|
802 |
+
data_root='/home/worawit.tepsan/Project_AI/Detection/data',
|
803 |
+
metainfo=dict(classes='license_plate'),
|
804 |
+
pipeline=[
|
805 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
806 |
+
dict(keep_ratio=True, scale=(
|
807 |
+
1333,
|
808 |
+
800,
|
809 |
+
), type='Resize'),
|
810 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
811 |
+
dict(
|
812 |
+
meta_keys=(
|
813 |
+
'img_id',
|
814 |
+
'img_path',
|
815 |
+
'ori_shape',
|
816 |
+
'img_shape',
|
817 |
+
'scale_factor',
|
818 |
+
),
|
819 |
+
type='PackDetInputs'),
|
820 |
+
],
|
821 |
+
test_mode=True,
|
822 |
+
type='CocoDataset'),
|
823 |
+
drop_last=False,
|
824 |
+
num_workers=2,
|
825 |
+
persistent_workers=True,
|
826 |
+
sampler=dict(_scope_='mmdet', shuffle=False, type='DefaultSampler'))
|
827 |
+
val_evaluator = dict(
|
828 |
+
_scope_='mmdet',
|
829 |
+
ann_file=
|
830 |
+
'/home/worawit.tepsan/Project_AI/Detection/data/annotations/instances_val.json',
|
831 |
+
backend_args=None,
|
832 |
+
format_only=False,
|
833 |
+
metric='bbox',
|
834 |
+
type='CocoMetric')
|
835 |
+
val_pipeline = [
|
836 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
837 |
+
dict(keep_ratio=True, scale=(
|
838 |
+
1333,
|
839 |
+
800,
|
840 |
+
), type='Resize'),
|
841 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
842 |
+
dict(
|
843 |
+
meta_keys=(
|
844 |
+
'img_id',
|
845 |
+
'img_path',
|
846 |
+
'ori_shape',
|
847 |
+
'img_shape',
|
848 |
+
'scale_factor',
|
849 |
+
),
|
850 |
+
type='PackDetInputs'),
|
851 |
+
]
|
852 |
+
vis_backends = [
|
853 |
+
dict(_scope_='mmdet', type='LocalVisBackend'),
|
854 |
+
]
|
855 |
+
visualizer = dict(
|
856 |
+
_scope_='mmdet',
|
857 |
+
name='visualizer',
|
858 |
+
type='DetLocalVisualizer',
|
859 |
+
vis_backends=[
|
860 |
+
dict(type='LocalVisBackend'),
|
861 |
+
])
|
862 |
+
work_dir = '/home/worawit.tepsan/Project_AI/Detection/object_detection/workdir'
|
epoch_12.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87be24bdab40769b9811906b18e59a7d0272708352fe578822e761a5e5984949
|
3 |
+
size 2883789421
|