# pytorch_lightning==1.8.6 seed_everything: 4444 data: class_path: vocos.dataset.VocosDataModule init_args: train_params: filelist_path: ??? sampling_rate: 24000 num_samples: 16384 batch_size: 16 num_workers: 8 val_params: filelist_path: ??? sampling_rate: 24000 num_samples: 48384 batch_size: 16 num_workers: 8 model: class_path: vocos.experiment.VocosExp init_args: sample_rate: 24000 initial_learning_rate: 5e-4 mel_loss_coeff: 45 mrd_loss_coeff: 0.1 num_warmup_steps: 0 # Optimizers warmup steps pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration # automatic evaluation evaluate_utmos: true evaluate_pesq: true evaluate_periodicty: true feature_extractor: class_path: vocos.feature_extractors.MelSpectrogramFeatures init_args: sample_rate: 24000 n_fft: 1024 hop_length: 256 n_mels: 100 padding: center backbone: class_path: vocos.models.VocosBackbone init_args: input_channels: 100 dim: 512 intermediate_dim: 1536 num_layers: 8 head: class_path: vocos.heads.IMDCTCosHead init_args: dim: 512 mdct_frame_len: 512 # mel-spec hop_length * 2 padding: center trainer: logger: class_path: pytorch_lightning.loggers.TensorBoardLogger init_args: save_dir: logs/ callbacks: - class_path: pytorch_lightning.callbacks.LearningRateMonitor - class_path: pytorch_lightning.callbacks.ModelSummary init_args: max_depth: 2 - class_path: pytorch_lightning.callbacks.ModelCheckpoint init_args: monitor: val_loss filename: vocos_checkpoint_{epoch}_{step}_{val_loss:.4f} save_top_k: 3 save_last: true - class_path: vocos.helpers.GradNormCallback # Lightning calculates max_steps across all optimizer steps (rather than number of batches) # This equals to 1M steps per generator and 1M per discriminator max_steps: 2000000 # You might want to limit val batches when evaluating all the metrics, as they are time-consuming limit_val_batches: 100 accelerator: gpu strategy: ddp devices: [0] log_every_n_steps: 100