# pytorch_lightning==1.8.6 | |
seed_everything: 4444 | |
data: | |
class_path: vocos.dataset.VocosDataModule | |
init_args: | |
train_params: | |
filelist_path: ??? | |
sampling_rate: 24000 | |
num_samples: 24000 | |
batch_size: 16 | |
num_workers: 8 | |
val_params: | |
filelist_path: ??? | |
sampling_rate: 24000 | |
num_samples: 24000 | |
batch_size: 16 | |
num_workers: 8 | |
model: | |
class_path: vocos.experiment.VocosEncodecExp | |
init_args: | |
sample_rate: 24000 | |
initial_learning_rate: 5e-4 | |
mel_loss_coeff: 45 | |
mrd_loss_coeff: 1.0 | |
num_warmup_steps: 0 # Optimizers warmup steps | |
pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration | |
# automatic evaluation | |
evaluate_utmos: true | |
evaluate_pesq: true | |
evaluate_periodicty: true | |
feature_extractor: | |
class_path: vocos.feature_extractors.EncodecFeatures | |
init_args: | |
encodec_model: encodec_24khz | |
bandwidths: [1.5, 3.0, 6.0, 12.0] | |
train_codebooks: false | |
backbone: | |
class_path: vocos.models.VocosBackbone | |
init_args: | |
input_channels: 128 | |
dim: 384 | |
intermediate_dim: 1152 | |
num_layers: 8 | |
adanorm_num_embeddings: 4 # len(bandwidths) | |
head: | |
class_path: vocos.heads.ISTFTHead | |
init_args: | |
dim: 384 | |
n_fft: 1280 | |
hop_length: 320 | |
padding: same | |
trainer: | |
logger: | |
class_path: pytorch_lightning.loggers.TensorBoardLogger | |
init_args: | |
save_dir: logs/ | |
callbacks: | |
- class_path: pytorch_lightning.callbacks.LearningRateMonitor | |
- class_path: pytorch_lightning.callbacks.ModelSummary | |
init_args: | |
max_depth: 2 | |
- class_path: pytorch_lightning.callbacks.ModelCheckpoint | |
init_args: | |
monitor: val_loss | |
filename: vocos_checkpoint_{epoch}_{step}_{val_loss:.4f} | |
save_top_k: 3 | |
save_last: true | |
- class_path: vocos.helpers.GradNormCallback | |
# Lightning calculates max_steps across all optimizer steps (rather than number of batches) | |
# This equals to 1M steps per generator and 1M per discriminator | |
max_steps: 2000000 | |
# You might want to limit val batches when evaluating all the metrics, as they are time-consuming | |
limit_val_batches: 100 | |
accelerator: gpu | |
strategy: ddp | |
devices: [0] | |
log_every_n_steps: 100 | |