from transformers import pipeline # Simple text generation "Hello World" example def huggingface_hello_world(): # Use a pre-trained text generation model generator = pipeline('text-generation', model='gpt2') # Generate a response to a "Hello" prompt hello_response = generator("Hello, how are you today?", max_length=50, num_return_sequences=1) # Print the generated text print("Model's Hello World Response:") print(hello_response[0]['generated_text']) # Another example with text classification def huggingface_sentiment_hello(): # Use a sentiment analysis model classifier = pipeline('sentiment-analysis') # Classify a "Hello World" sentiment sentiment = classifier("Hello World! This is a nice day.") # Print the sentiment result print("\nSentiment Analysis of 'Hello World':") print(f"Sentiment: {sentiment[0]['label']}") print(f"Confidence: {sentiment[0]['score']:.2f}") # Run the examples if __name__ == "__main__": huggingface_hello_world() huggingface_sentiment_hello()