|
from transformers import pipeline |
|
|
|
|
|
def huggingface_hello_world(): |
|
|
|
generator = pipeline('text-generation', model='gpt2') |
|
|
|
|
|
hello_response = generator("Hello, how are you today?", max_length=50, num_return_sequences=1) |
|
|
|
|
|
print("Model's Hello World Response:") |
|
print(hello_response[0]['generated_text']) |
|
|
|
|
|
def huggingface_sentiment_hello(): |
|
|
|
classifier = pipeline('sentiment-analysis') |
|
|
|
|
|
sentiment = classifier("Hello World! This is a nice day.") |
|
|
|
|
|
print("\nSentiment Analysis of 'Hello World':") |
|
print(f"Sentiment: {sentiment[0]['label']}") |
|
print(f"Confidence: {sentiment[0]['score']:.2f}") |
|
|
|
|
|
if __name__ == "__main__": |
|
huggingface_hello_world() |
|
huggingface_sentiment_hello() |