File size: 9,256 Bytes
0bdcaf2 a8da9ff 0bdcaf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import os
import re
from safetensors.torch import save_file
from safetensors.torch import safe_open
from huggingface_hub import snapshot_download
from transformers import VoxtralConfig
# fmt: off
STATE_DICT_MAPPING = {
r"^language_model\.lm_head": r"output",
r"^language_model\.model\.norm": r"norm",
r"^language_model\.model\.embed_tokens": r"tok_embeddings",
r"^language_model\.model\.layers\.(\d+)\.input_layernorm": r"layers.\1.attention_norm",
r"^language_model\.model\.layers\.(\d+)\.post_attention_layernorm": r"layers.\1.ffn_norm",
r"^language_model\.model\.layers\.(\d+)\.self_attn\.(q|k|v|o)_proj": r"layers.\1.attention.w\2",
r"^language_model\.model\.layers\.(\d+)\.mlp\.gate_proj": r"layers.\1.feed_forward.w1",
r"^language_model\.model\.layers\.(\d+)\.mlp\.down_proj": r"layers.\1.feed_forward.w2",
r"^language_model\.model\.layers\.(\d+)\.mlp\.up_proj": r"layers.\1.feed_forward.w3",
r"language_model.model.embed_tokens": r"tok_embeddings",
r"audio_tower.conv1": r"mm_whisper_embeddings.whisper_encoder.conv_layers.0" ,
r"audio_tower.conv2": r"mm_whisper_embeddings.whisper_encoder.conv_layers.1" ,
r"audio_tower.layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.norm" ,
r"audio_tower.layers.(\d+).self_attn.(q|k|v)_proj": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention.w\2" ,
r"audio_tower.layers.(\d+).self_attn.out_proj": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention.wo" ,
r"audio_tower.layers.(\d+).self_attn_layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.attention_norm" ,
r"audio_tower.layers.(\d+).fc(\d+)": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.feed_forward.w\2" ,
r"audio_tower.layers.(\d+).final_layer_norm": r"mm_whisper_embeddings.whisper_encoder.transformer.layers.\1.ffn_norm" ,
r"multi_modal_projector.linear_1": r"mm_whisper_embeddings.audio_language_projection.0" ,
r"multi_modal_projector.linear_2": r"mm_whisper_embeddings.audio_language_projection.2" ,
}
# fmt: on
SKIP_KEYS = ["audio_tower.embed_positions.weight"]
def add_quantization_config(config, hf_config: VoxtralConfig):
quantization_config = hf_config.quantization_config
mistral_ignore = [] # keys to ignore in the quantization config
for hf_key in quantization_config["ignore"]:
mistral_key = map_hf_key_to_mistral(hf_key)
mistral_ignore.append(mistral_key)
quantization_config["ignore"] = mistral_ignore
config["quantization"] = quantization_config
return config
def map_hf_key_to_mistral(hf_key):
"""Map a key from HF format to Mistral format"""
for pattern, replacement in STATE_DICT_MAPPING.items():
new_key, n_replace = re.subn(pattern, replacement, hf_key)
if n_replace > 0:
return new_key.replace("weight_scale", "qscale_weight")
# If no mapping found, return the original key
return hf_key.replace("weight_scale", "qscale_weight")
def permute_for_mistral_rope(tensor, n_heads, dim1, dim2):
"""Reverse the ROPE permutation to get back to Mistral format."""
tensor = tensor.view(n_heads, 2, dim1 // n_heads // 2, dim2)
tensor = tensor.transpose(1, 2)
tensor = tensor.reshape(dim1, dim2)
return tensor
def convert_state_dict(hf_state_dict, config):
"""Convert HF Voxtral state dict to Mistral format"""
mistral_dict = {}
num_attention_heads = config["n_heads"]
hidden_size = config["dim"]
head_dim = config["head_dim"]
num_key_value_heads = config["n_kv_heads"]
key_value_dim = head_dim * num_key_value_heads
query_dim = head_dim * num_attention_heads
for hf_key, tensor in hf_state_dict.items():
if hf_key in SKIP_KEYS:
continue
mistral_key = map_hf_key_to_mistral(hf_key)
if "language_model" in hf_key:
if hf_key.endswith("q_proj.weight"):
tensor = permute_for_mistral_rope(tensor, num_attention_heads, query_dim, hidden_size)
elif hf_key.endswith("q_proj.weight_scale") and tensor.size(0) == num_attention_heads:
tensor = permute_for_mistral_rope(tensor, num_attention_heads, query_dim, 1)
elif hf_key.endswith("k_proj.weight"):
tensor = permute_for_mistral_rope(tensor, num_key_value_heads, key_value_dim, hidden_size)
elif hf_key.endswith("k_proj.weight_scale") and tensor.size(0) == num_key_value_heads:
tensor = permute_for_mistral_rope(tensor, num_key_value_heads, key_value_dim, 1)
mistral_dict[mistral_key] = tensor
return mistral_dict
def write_model(
input_path_or_repo,
output_dir,
unquantized_model_path=None,
):
print("Converting HF Voxtral model to Mistral format.")
os.makedirs(output_dir, exist_ok=True)
# Load the HF Voxtral model
print(f"Loading HF Voxtral model from {input_path_or_repo}...")
hf_config = VoxtralConfig.from_pretrained(input_path_or_repo)
local_path = snapshot_download(input_path_or_repo)
# Convert config
if unquantized_model_path is not None:
if os.path.exists(unquantized_model_path):
unquantized_model_path = unquantized_model_path
else:
unquantized_model_path = snapshot_download(unquantized_model_path)
config_path = os.path.join(unquantized_model_path, "params.json")
with open(config_path, "r") as f:
config = json.load(f)
config = add_quantization_config(config, hf_config)
with open(os.path.join(output_dir, "params.json"), "w") as f:
json.dump(config, f, indent=2)
else:
raise ValueError(f"Unquantized model config not found for {unquantized_model_path}")
# Convert state dict
print("Converting state dict...")
tensor_files = sorted([f for f in os.listdir(os.path.join(local_path)) if f.endswith(".safetensors")])
hf_state_dict = {}
for file in tensor_files:
file_path = os.path.join(local_path, file)
with safe_open(file_path, framework="pt", device="cuda") as f:
for key in f.keys():
hf_state_dict[key] = f.get_tensor(key)
mistral_state_dict = convert_state_dict(hf_state_dict, config)
# save the state dict
save_file(mistral_state_dict, os.path.join(output_dir, "consolidated.safetensors"))
del hf_state_dict, mistral_state_dict
gc.collect()
print("Model converted successfully.")
def write_tokenizer(input_path_or_repo: str, output_dir: str):
"""Extract and save the tokenizer from Voxtral model"""
from transformers import MistralCommonTokenizer
print("Extracting tokenizer...")
tokenizer = MistralCommonTokenizer.from_pretrained(input_path_or_repo)
tokenizer.save_pretrained(output_dir)
print("Tokenizer saved successfully.")
def main():
parser = argparse.ArgumentParser(description="Convert HF Voxtral weights to Mistral format")
parser.add_argument(
"--input_path_or_repo",
type=str,
default="RedHatAI/Voxtral-Mini-3B-2507-FP8-dynamic",
help="Path or repo containing HF Voxtral model",
)
parser.add_argument(
"--output_dir",
type=str,
default="Voxtral-Mini-3B-2507-FP8-dynamic-converted",
help="Location to write Mistral model and tokenizer",
)
parser.add_argument(
"--skip_tokenizer",
action="store_true",
help="Skip tokenizer conversion"
)
parser.add_argument(
"--unquantized_model_path",
type=str,
default="mistralai/Voxtral-Mini-3B-2507",
help="Path to the unquantized model",
)
args = parser.parse_args()
write_model(
args.input_path_or_repo,
args.output_dir,
unquantized_model_path=args.unquantized_model_path,
)
if not args.skip_tokenizer:
write_tokenizer(
args.input_path_or_repo,
args.output_dir,
)
if __name__ == "__main__":
main()
|