File size: 5,532 Bytes
0566aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
 
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
 
a99b512
0566aed
a99b512
0566aed
 
a99b512
0566aed
 
 
 
 
 
a99b512
0566aed
 
 
 
 
 
a99b512
0566aed
 
 
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
 
 
 
 
a99b512
0566aed
a99b512
0566aed
 
 
 
a99b512
0566aed
 
 
 
 
 
 
a99b512
0566aed
 
a99b512
0566aed
 
 
 
 
 
 
 
 
 
a99b512
0566aed
 
a99b512
0566aed
 
a99b512
0566aed
 
 
 
 
 
 
 
 
 
a99b512
0566aed
 
 
 
 
a99b512
0566aed
a99b512
0566aed
 
 
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
a99b512
0566aed
 
a99b512
0566aed
 
 
 
 
a99b512
0566aed
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
 
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
a99b512
0566aed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---

library_name: transformers
license: apache-2.0
language:
- en
metrics:
- code_eval
- accuracy
base_model:
- meta-llama/Llama-3.2-3B-Instruct
pipeline_tag: text-generation
---

# Health Chatbot

Welcome to the official Hugging Face repository for **Health Chatbot**, a conversational AI model fine-tuned to assist with health-related queries. This model is based on [LLaMA 3.2](https://ai.meta.com/llama/), fine-tuned using **QLoRA** for lightweight and efficient training.

---

## Overview

**Health Chatbot** is designed to provide accurate and conversational responses for general health advice and wellness information. The model is intended for educational purposes and is not a substitute for professional medical consultation.

Key Features:

- Fine-tuned using **QLoRA** for parameter-efficient training.
- Trained on a diverse dataset of health-related queries and answers.
- Optimized for conversational and empathetic interactions.

---

## Model Details

- **Base Model**: LLaMA 3.2
- **Training Method**: QLoRA (Quantized Low-Rank Adaptation)
- **Dataset**: Custom curated dataset comprising publicly available health resources, FAQs, and synthetic dialogues.
- **Intended Use**: Conversational health assistance and wellness education.

---

## How to Use the Model

You can load and use the model in your Python environment with the `transformers` library:

### Installation

Make sure you have the necessary dependencies installed:

```bash
pip install transformers accelerate bitsandbytes
```

### Loading the Model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("RayyanAhmed9477/Health-Chatbot")
model = AutoModelForCausalLM.from_pretrained(
    "RayyanAhmed9477/Health-Chatbot",
    device_map="auto",
    load_in_8bit=True
)

# Generate a response
def chat(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Example usage
prompt = "What are some common symptoms of the flu?"
print(chat(prompt))
```

---

## Fine-Tuning the Model

If you want to fine-tune the model further on a custom dataset, follow the steps below.

### Requirements

```bash
pip install datasets peft
```

### Dataset Preparation

Prepare your dataset in a JSON or CSV format with `input` and `output` fields:

**Example Dataset (JSON)**:

```json
[
    {"input": "What are some symptoms of dehydration?", "output": "Symptoms include dry mouth, fatigue, and dizziness."},
    {"input": "How can I boost my immune system?", "output": "Eat a balanced diet, exercise regularly, and get enough sleep."}
]
```

### Training Script

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
from datasets import load_dataset

# Load the base model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("RayyanAhmed9477/Health-Chatbot")
model = AutoModelForCausalLM.from_pretrained(
    "RayyanAhmed9477/Health-Chatbot",
    device_map="auto",
    load_in_8bit=True
)

# Prepare model for training
model = prepare_model_for_int8_training(model)

# Define LoRA configuration
lora_config = LoraConfig(
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.1,
    bias="none",
    task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)

# Load your custom dataset
data = load_dataset("json", data_files="your_dataset.json")

# Fine-tune the model
from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./results",
    per_device_train_batch_size=4,
    num_train_epochs=3,
    logging_dir="./logs",
    save_strategy="epoch",
    evaluation_strategy="epoch",
    learning_rate=1e-4,
    fp16=True
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=data["train"]
)

trainer.train()

# Save the fine-tuned model
model.save_pretrained("./fine_tuned_health_chatbot")
tokenizer.save_pretrained("./fine_tuned_health_chatbot")
```

---

## Model Evaluation

Evaluate the model's performance using metrics like perplexity and BLEU:

```python
from datasets import load_metric

# Load evaluation dataset
eval_data = load_dataset("json", data_files="evaluation_dataset.json")

# Evaluate with perplexity
def compute_perplexity(model, dataset):
    metric = load_metric("perplexity")
    results = metric.compute(model=model, dataset=dataset)
    return results

print(compute_perplexity(model, eval_data["test"]))
```

---

## Limitations and Warnings

- The model is not a substitute for professional medical advice.
- Responses are generated based on patterns in the training data and may not always be accurate or up-to-date.

---

## Contributing

Contributions are welcome! If you have suggestions, improvements, or issues to report, please create a pull request or an issue in this repository.

---

## License

This model is released under the [Apache 2.0 License](LICENSE).

---

## Contact

For any queries or collaborations, reach out to me via [GitHub](https://github.com/Rayyan9477) or email at `[email protected]`, [LinkedIn](https\://www\.linkedin.com/in/rayyan-ahmed9477/)  .

---

## Acknowledgements

Special thanks to the Hugging Face and Meta AI teams for their open-source contributions to the NLP and machine learning community.