File size: 1,349 Bytes
447d271 ae8aadc 65bb48e 447d271 65bb48e ae8aadc 65bb48e ae8aadc 65bb48e ae8aadc 65bb48e ae8aadc 65bb48e ae8aadc 65bb48e ae8aadc 65bb48e ae8aadc 65bb48e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language: en
tags:
- arxiv
- research-papers
- text-generation
license: apache-2.0
---
# KnullAI v2 - Fine-tuned on ArXiver Dataset
This model is a fine-tuned version of KnullAI v2, specifically trained on the ArXiver dataset containing research paper information.
## Training Data
The model was fine-tuned on the neuralwork/arxiver dataset, which contains:
- Paper titles
- Abstracts
- Authors
- Publication dates
- Links
## Model Details
- Base model: Rawkney/knullAi_v2
- Training type: Causal language modeling
- Hardware: T4 GPU
- Mixed precision: FP16
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("YOUR_REPO_ID")
tokenizer = AutoTokenizer.from_pretrained("YOUR_REPO_ID")
# Example usage
title = "Your paper title"
input_text = f"Title: {title}\nAbstract:"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(
inputs["input_ids"],
max_length=256,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Training Parameters
- Learning rate: 1e-5
- Epochs: 1
- Batch size: 1
- Gradient accumulation steps: 16
- Mixed precision training (fp16)
- Max sequence length: 512
|