File size: 8,314 Bytes
8c1f76c
 
a459fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1f76c
 
a459fe0
8c1f76c
a459fe0
8c1f76c
a459fe0
8c1f76c
a459fe0
8c1f76c
 
 
a459fe0
8c1f76c
a459fe0
 
 
 
 
 
 
8c1f76c
 
 
 
 
a459fe0
 
 
8c1f76c
 
 
 
 
 
 
 
 
a459fe0
 
 
 
8c1f76c
 
 
 
 
a459fe0
 
8c1f76c
 
 
 
 
a459fe0
 
8c1f76c
 
 
 
 
a459fe0
 
 
 
8c1f76c
 
 
 
 
a459fe0
 
 
8c1f76c
 
 
 
 
a459fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c1f76c
 
 
 
 
 
 
a459fe0
 
8c1f76c
 
 
 
a459fe0
 
 
 
 
8c1f76c
 
a459fe0
 
 
8c1f76c
 
 
 
a459fe0
 
 
 
 
 
 
8c1f76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a459fe0
8c1f76c
 
 
 
 
 
 
 
 
 
 
a459fe0
 
 
8c1f76c
 
 
a459fe0
 
 
 
 
 
8c1f76c
 
 
 
 
 
 
 
 
a459fe0
8c1f76c
 
 
 
 
 
 
a459fe0
 
 
 
 
 
8c1f76c
 
 
 
 
a459fe0
 
8c1f76c
 
 
 
 
 
 
a459fe0
8c1f76c
 
 
a459fe0
 
 
 
8c1f76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a459fe0
 
 
 
 
8c1f76c
 
 
a459fe0
 
8c1f76c
 
 
a459fe0
8c1f76c
 
 
a459fe0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
library_name: transformers
base_model:
- eddiegulay/wav2vec2-large-xlsr-mvc-swahili
tags:
- automatic-speech-recognition
- wav2vec2
- swahili
- huggingface
- transformers
- common-voice
license: apache-2.0
datasets:
- mozilla-foundation/common_voice_11_0
language:
- sw
metrics:
- bleu
- wer
- rouge
- f1
---

# πŸ‡°πŸ‡ͺ Model Card for `RareElf/swahili-wav2vec2-asr`

This model is a fine-tuned version of [`eddiegulay/wav2vec2-large-xlsr-mvc-swahili`](https://huggingface.co/eddiegulay/wav2vec2-large-xlsr-mvc-swahili) for **automatic speech recognition (ASR)** in **Swahili**. It has been trained using the [Common Voice 11.0 Swahili dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).

---

## πŸ“‹ Model Details

### Model Description

This model leverages the `wav2vec2` architecture from Facebook AI, fine-tuned for Swahili ASR. It maps raw speech waveforms sampled at 16kHz to transcriptions using a CTC (Connectionist Temporal Classification) loss. It supports real-time transcription for voice-based Swahili applications.

- **Developed by:** Kevin Obote / RareElf
- **Funded by:** Internal research at Guild Code
- **Shared by:** RareElf
- **Model type:** Automatic Speech Recognition (ASR)
- **Language(s) (NLP):** Swahili (`sw`)
- **License:** Apache-2.0
- **Finetuned from model:** `eddiegulay/wav2vec2-large-xlsr-mvc-swahili`

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://huggingface.co/RareElf/swahili-wav2vec2-asr
- **Paper [optional]:** Coming soon
- **Demo [optional]:** Coming soon on semasasa.ai

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

This model can be used for:

- Transcribing Swahili audio for accessibility, journalism, documentation, education, etc.
- Integration into chatbots or voice agents in Swahili.

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

- Can be integrated with translation and sentiment analysis pipelines.
- Useful for fine-tuning on domain-specific Swahili data (e.g.education, healthcare, government).

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

- Not suitable for noisy, far-field, or multi-speaker environments without preprocessing.
- Not recommended for use in legal, medical, or high-stakes domains without additional validation.

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->


- The model may underperform on underrepresented dialects of Swahili.
- Accents, noisy recordings, and overlapping speech may impact accuracy.
- Reflects the linguistic distribution of Common Voice contributors, which may not be representative of all Swahili speakers.

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

- Preprocess noisy audio for best results.
- Fine-tune further on targeted domain data for production use.
- Provide user disclaimers about ASR limitations in live deployments.

## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torch
import librosa

model_id = "RareElf/swahili-wav2vec2-asr"

processor = Wav2Vec2Processor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)

audio, _ = librosa.load("sample.wav", sr=16000)
inputs = processor(audio, return_tensors="pt", sampling_rate=16000).input_values

with torch.no_grad():
    logits = model(inputs).logits

predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print(transcription)
```

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

- **Dataset:** Common Voice 11.0 – Swahili subset


### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- Fine-tuned using `Trainer` API from πŸ€— Transformers.
- **Loss:** CTC (Connectionist Temporal Classification)
- **Optimizer:** AdamW
- **Precision:** `fp16` (mixed precision)
  
#### Preprocessing [optional]

- Resampled to 16kHz
- Normalized text
- Removed empty, corrupted, or misaligned samples


#### Training Hyperparameters

- **Training regime:**
- **Epochs:** 10  
- **Batch Size:** 16  
- **Learning Rate:** 3e-4  
- **Warmup Steps:** 500  
- **Weight Decay:** 0.01  
- **Gradient Accumulation:** 2  <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

- **Dataset:** Held-out subset of Common Voice Swahili

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

- WER (Word Error Rate)
- BLEU (for translation use-case)
- ROUGE (for paraphrase quality)

### Results

| Metric | Score |
|--------|-------|
| WER    | 0.33  |
| BLEU   | 0.44 |
| ROUGE  | 0.66  |
> *Note: Evaluation scores are being finalized with the full test set.*

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

- Visualized attention maps confirm the model learns phonetic and acoustic patterns relevant to Swahili.

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** ***  
- **Hours used:** ~10  
- **Cloud Provider:** Google Cloud  
- **Compute Region:** ****  
- **Carbon Emitted:** ~X gCO2eq (estimation via [mlco2](https://mlco2.github.io/impact))


## Technical Specifications [optional]

### Model Architecture and Objective

- **Architecture:** Wav2Vec2 (base) + CTC head  
- **Objective:** Predict character-level transcription from 16kHz audio

### Compute Infrastructure

[More Information Needed]

#### Hardware

** Personal Computer Lenovo ThinkPad T14 Gen 1 (32GB RAM) 1TB SSD

#### Software

- Python 3.10  
- PyTorch 2.x  
- Transformers 4.39.x  
- Datasets 2.x  

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

- **ASR:** Automatic Speech Recognition

- **WER:** Word Error Rate

- **CTC:** Connectionist Temporal Classification

## More Information [optional]

- [Common Voice Dataset Card](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0)
- [Transformers Documentation](https://huggingface.co/docs/transformers)

## Model Card Authors [optional]

- **Kevin Obote/ RareElf / Guild Code Team**

## Model Card Contact

- **Email:** [[email protected]](mailto:[email protected])  
- **GitHub:** [Kevin Obote](https://github.com/Kevinobote)