File size: 3,029 Bytes
048f1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-finetuned-nan-tw-v3-torbo-20-epoch
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: nan-tw
      split: test
      args: nan-tw
    metrics:
    - name: Wer
      type: wer
      value: 100.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-finetuned-nan-tw-v3-torbo-20-epoch

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2611
- Wer: 100.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.2238        | 1.0616  | 500  | 0.2174          | 100.0   |
| 0.1871        | 2.1233  | 1000 | 0.2099          | 100.0   |
| 0.1606        | 3.1849  | 1500 | 0.2050          | 100.0   |
| 0.1315        | 4.2465  | 2000 | 0.2134          | 100.0   |
| 0.1087        | 5.3082  | 2500 | 0.2247          | 100.0   |
| 0.0969        | 6.3698  | 3000 | 0.2269          | 100.0   |
| 0.0851        | 7.4315  | 3500 | 0.2381          | 100.0   |
| 0.0793        | 8.4931  | 4000 | 0.2412          | 100.0   |
| 0.0737        | 9.5547  | 4500 | 0.2406          | 100.0   |
| 0.07          | 10.6164 | 5000 | 0.2452          | 99.9569 |
| 0.0669        | 11.6780 | 5500 | 0.2435          | 100.0   |
| 0.0623        | 12.7396 | 6000 | 0.2447          | 100.0   |
| 0.0605        | 13.8013 | 6500 | 0.2490          | 100.0   |
| 0.0563        | 14.8629 | 7000 | 0.2524          | 99.9569 |
| 0.0525        | 15.9245 | 7500 | 0.2536          | 100.0   |
| 0.0485        | 16.9862 | 8000 | 0.2554          | 100.0   |
| 0.0435        | 18.0468 | 8500 | 0.2591          | 100.0   |
| 0.0386        | 19.1084 | 9000 | 0.2611          | 100.0   |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0