File size: 4,798 Bytes
aca7f7d 9b9a5f7 aca7f7d 9b9a5f7 aca7f7d 9b9a5f7 aca7f7d 9b9a5f7 c75ca54 788eff8 d4f622d 55b78e2 aca7f7d fd5ac0e aca7f7d fd5ac0e aca7f7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
language:
- bn
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- openslr
- crblp
metrics:
- wer
model-index:
- name: Whisper Small - Mohammed Rakib
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: bn_in
split: test
metrics:
- type: wer
value: 10.8
name: WER
- type: cer
value: 6.55
name: CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: bn
split: test
metrics:
- type: wer
value: 8.94
name: WER
- type: cer
value: 4.71
name: CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small - Mohammed Rakib
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common-voice-11, the google-fleurs, the openslr53 and the crblp speech corpus datasets.
It achieves the following results on the evaluation set:
- Loss: 0.0617
- Cer: 5.4436
- Wer: 9.6538
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8000
- training_steps: 40000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.5361 | 0.13 | 1000 | 0.4043 | 22.6599 | 44.0521 |
| 0.2881 | 0.26 | 2000 | 0.2217 | 16.3939 | 32.4894 |
| 0.2265 | 0.38 | 3000 | 0.1728 | 13.0425 | 25.9637 |
| 0.1974 | 0.51 | 4000 | 0.1430 | 11.3260 | 22.3187 |
| 0.1591 | 0.64 | 5000 | 0.1255 | 10.0167 | 19.5115 |
| 0.1504 | 0.77 | 6000 | 0.1102 | 8.8333 | 17.1919 |
| 0.1259 | 0.89 | 7000 | 0.1003 | 8.1863 | 15.8576 |
| 0.1184 | 1.02 | 8000 | 0.0940 | 7.7868 | 14.9110 |
| 0.1099 | 1.15 | 9000 | 0.0885 | 7.3675 | 13.9444 |
| 0.1075 | 1.28 | 10000 | 0.0830 | 6.9648 | 13.2008 |
| 0.095 | 1.41 | 11000 | 0.0789 | 6.6969 | 12.6776 |
| 0.0943 | 1.53 | 12000 | 0.0766 | 6.3765 | 11.9896 |
| 0.0923 | 1.66 | 13000 | 0.0731 | 6.1784 | 11.7203 |
| 0.0824 | 1.79 | 14000 | 0.0699 | 5.9267 | 11.1632 |
| 0.0756 | 1.92 | 15000 | 0.0683 | 5.6305 | 10.6327 |
| 0.0634 | 2.04 | 16000 | 0.0671 | 5.6905 | 10.6947 |
| 0.0618 | 2.17 | 17000 | 0.0662 | 5.5107 | 10.2926 |
| 0.0679 | 2.3 | 18000 | 0.0643 | 5.4948 | 10.1792 |
| 0.0589 | 2.43 | 19000 | 0.0647 | 5.5201 | 10.1881 |
| 0.0623 | 2.56 | 20000 | 0.0633 | 5.2731 | 9.8449 |
| 0.0558 | 2.68 | 21000 | 0.0623 | 5.4211 | 10.0267 |
| 0.0564 | 2.81 | 22000 | 0.0617 | 5.4553 | 9.9893 |
| 0.0552 | 2.94 | 23000 | 0.0607 | 5.3860 | 9.7778 |
| 0.0403 | 3.07 | 24000 | 0.0621 | 5.7297 | 10.0382 |
| 0.0406 | 3.19 | 25000 | 0.0617 | 5.4436 | 9.6538 |
| 0.041 | 3.32 | 26000 | 0.0611 | 6.0867 | 10.3834 |
| 0.0388 | 3.45 | 27000 | 0.0614 | 6.1641 | 10.3890 |
| 0.0383 | 3.58 | 28000 | 0.0611 | 6.1460 | 10.3537 |
| 0.0401 | 3.71 | 29000 | 0.0603 | 6.9576 | 11.0697 |
| 0.0343 | 3.83 | 30000 | 0.0613 | 7.1918 | 11.2243 |
| 0.0357 | 3.96 | 31000 | 0.0603 | 7.3128 | 11.3313 |
| 0.0313 | 4.09 | 32000 | 0.0624 | 7.3871 | 11.3861 |
| 0.0281 | 4.22 | 33000 | 0.0626 | 7.8705 | 11.8248 |
| 0.0298 | 4.34 | 34000 | 0.0629 | 8.3360 | 12.2368 |
| 0.0282 | 4.47 | 35000 | 0.0627 | 8.7840 | 12.6270 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.10.2.dev0
- Tokenizers 0.13.2
|