File size: 27,905 Bytes
5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e ccd97db 5c20d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 |
## Dependencies (run in the venv before running this script)
# pip install git+https://github.com/huggingface/datasets git+https://github.com/huggingface/transformers
# pip install huggingface_hub ipywidgets librosa evaluate>=0.3.0 jiwer bnunicodenormalizer
# pip install tensorboardX
# sudo add-apt-repository -y ppa:jonathonf/ffmpeg-4
# sudo apt update
# sudo apt install -y ffmpeg
#sudo apt-get install git-lfs
## Run the following commands separately before running the py version of this notebook to connect to HuggningFace Hub!
# git config --global credential.helper store
# huggingface-cli login
## Enter your token by visiting: https://huggingface.co/settings/tokens
## Create a repo in the hub:
# huggingface-cli repo create whisper-small-es OR, huggingface-cli repo create <repo_name/model_name>
## Install git lfs and clone the just created repo
# git lfs install
# git clone <repo_link>
## cd to the cloned repo and copy (cp) this python script or everything in training dir to that repo
# cd <repo_name/model_name>
# cp /home/mamun/asr_training/Govt_Speech_Demo/training/my-training.py .
#For more details: https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event
## 1. Setting Up Environment Variables & Devices
import os
import torch
abs_path = os.path.abspath('.')
# base_dir = os.path.dirname(os.path.dirname(abs_path))
base_dir = os.path.dirname(abs_path)
os.environ['TRANSFORMERS_CACHE'] = os.path.join(base_dir, 'models_cache')
os.environ['TRANSFORMERS_OFFLINE'] = '0'
os.environ['HF_DATASETS_CACHE'] = os.path.join(base_dir, 'datasets_cache')
os.environ['HF_DATASETS_OFFLINE'] = '0'
# device = "GPU" if torch.cuda.is_available() else "CPU"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"\n\n Device to be used: {device} \n\n")
## 2. Setting Up Variables
# model_name = "openai/whisper-tiny"
model_name = "openai/whisper-small"
# model_name = "openai/whisper-large-v2"
language = "Bengali"
task = "transcribe" # transcribe or translate
print(f"\n\n Loading {model_name} for {language} to {task}...this might take a while.. \n\n")
## 3. Setting Up Training Args
output_dir = "./"
overwrite_output_dir = True
max_steps = 40000
# max_steps = 5
per_device_train_batch_size = 4
# per_device_train_batch_size = 1
per_device_eval_batch_size = 32
# per_device_eval_batch_size = 1
gradient_accumulation_steps = 16
# gradient_accumulation_steps = 1
dataloader_num_workers = 0 #Default: 0 and 0 for Windows
gradient_checkpointing = False
evaluation_strategy ="steps"
# eval_steps = 5
eval_steps = 1000
save_strategy = "steps"
save_steps = 1000
# save_steps = 5
save_total_limit = 5
learning_rate = 1e-5
lr_scheduler_type = "cosine" # "constant", "constant_with_warmup", "cosine", "cosine_with_restarts", "linear"(default), "polynomial", "inverse_sqrt"
warmup_steps = 8000 # (1 epoch)
# warmup_steps = 1
logging_steps = 25
# logging_steps = 1
# weight_decay = 0.01
weight_decay = 0
dropout = 0.1 # any value > 0.1 hurts performance. So, use values between 0.0 and 0.1
load_best_model_at_end = True
metric_for_best_model = "wer"
greater_is_better = False
bf16 = True
# bf16 = False
tf32 = True
# tf32 = False
generation_max_length = 448 # ensure that the generation_max_length is equal to model max_length. model max_length = 448 for whisper-small (see config.json).
report_to = ["tensorboard"]
predict_with_generate = True
push_to_hub = True
# push_to_hub = False
freeze_feature_encoder = False
early_stopping_patience = 10
apply_spec_augment = True
torch_compile = False #Windows not yet supported
optim="adamw_hf" # adamw_hf (default), adamw_torch, adamw_torch_fused (improved), adamw_apex_fused, adamw_anyprecision or adafactor
## 4. Load Datasets
print("\n\n Loading Datasets...this might take a while..\n\n")
from datasets import load_dataset, DatasetDict, Features, Value, Audio
common_voice = DatasetDict()
google_fleurs = DatasetDict()
openslr = DatasetDict()
## commonvoice_11.0 + google_fleurs + openslr53
my_dataset = DatasetDict()
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_11_0", "bn", split="train+validation", cache_dir=os.path.join(base_dir, 'datasets_cache'))
google_fleurs["train"] = load_dataset("google/fleurs", "bn_in", split="train+validation", cache_dir=os.path.join(base_dir, 'datasets_cache'))
openslr = load_dataset("openslr", "SLR53", cache_dir=os.path.join(base_dir, 'datasets_cache'))
# loading crblp dataset
features = Features(
{
"text": Value("string"),
'path': Value('string'),
"audio": Audio(sampling_rate=16000)
}
)
crblp = load_dataset(
'csv',
data_files='D:/Govt_Speech_Demo/crblp_speech_corpus/crblp_train.csv',
split='train',
cache_dir=os.path.join(base_dir, 'datasets_cache'),
features=features
)
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", "bn", split="test", cache_dir=os.path.join(base_dir, 'datasets_cache'))
google_fleurs["test"] = load_dataset("google/fleurs", "bn_in", split="test", cache_dir=os.path.join(base_dir, 'datasets_cache'))
# see count of samples in each dataset
print("\n\n Datasets Loaded \n\n")
print(common_voice)
print(google_fleurs)
print(openslr)
print(crblp)
## 5. Small Subset for Testing
# common_voice['train'] = common_voice['train'].select(range(50))
# common_voice['test'] = common_voice['test'].select(range(50))
# google_fleurs['train'] = google_fleurs['train'].select(range(50))
# google_fleurs['test'] = google_fleurs['test'].select(range(50))
# openslr['train'] = openslr['train'].select(range(50))
# crblp = crblp.select(range(50))
# print("\n\n For testing, the small subsets are:")
# print(common_voice)
# print(google_fleurs)
# print(openslr)
# print(crblp)
# print("\n")
# print("\n EXITING \n")
# import sys
# sys.exit()
## Removing bad samples from common_voice based on upvotes and downvotes
print("\n BEFORE Filtering by Upvotes (Common Voice): \n")
print(common_voice["train"])
# FILTERING!!! Will get 37k Data if >0 and will get 201k Data if >=0 out of 207k
common_voice["train"] = common_voice["train"].filter(lambda x: (x["up_votes"] - x["down_votes"]) >= 0, num_proc=None)
print("\n AFTER Filtering by Upvotes (Common Voice): \n")
print(common_voice["train"])
## REMOVE Corrupt Files (Only required if you use the "other" split of Common Voice)
# skipFiles = open("corrupt_files.txt").read().splitlines()
# skipFiles = skipFiles[3:]
# length = len(skipFiles)
# first = skipFiles[0]
# last = skipFiles[-1]
# print(f"\n No. of corrupt files: {length}, First: {first}, Last {last}\n")
# print("\n Finding indexes of corrupt files... \n")
# from tqdm import tqdm
# count=0
# error_index = []
# for i in tqdm(range(len(common_voice["train"]))):
# path = common_voice["train"][i]["path"].split("/")[-1].split(".")[0]
# if path in skipFiles:
# # print(path)
# count+=1
# error_index.append(i)
# print(f"\n Total Corrupt Files: {count} \n")
# print("\n Removing corrupt files from the Common Voice dataset...\n")
# common_voice["train"] = common_voice["train"].filter(lambda example, idx: idx not in error_index, with_indices=True)
print("\n\n So, the datasets to be trained are: \n\n")
print("\n Common Voice 11.0 - Bangla\n")
print(common_voice)
print("\n Google Fleurs - Bangla \n")
print(google_fleurs)
print("\n OpenSLR-53 - Bangla \n")
print(openslr)
print("\n CRBLP - Bangla \n")
print(crblp)
print("\n")
## 6. Merge Datasets
from datasets import concatenate_datasets, Audio
sampling_rate = 16000
## resample to specified sampling rate
common_voice = common_voice.cast_column("audio", Audio(sampling_rate))
google_fleurs = google_fleurs.cast_column("audio", Audio(sampling_rate))
openslr = openslr.cast_column("audio", Audio(sampling_rate))
crblp = crblp.cast_column("audio", Audio(sampling_rate))
## normalise columns to ["audio", "sentence"]
common_voice = common_voice.remove_columns(
set(common_voice['test'].features.keys()) - {"audio", "sentence"}
)
google_fleurs = google_fleurs.rename_column("raw_transcription", "sentence")
google_fleurs = google_fleurs.remove_columns(
set(google_fleurs['test'].features.keys()) - {"audio", "sentence"}
)
openslr = openslr.remove_columns(
set(openslr['train'].features.keys()) - {"audio", "sentence"}
)
crblp = crblp.rename_column("text", "sentence")
crblp = crblp.remove_columns(
set(crblp.features.keys()) - {"audio", "sentence"}
)
## check if all audio are in float32 dtype or not.
## a fix is: https://github.com/huggingface/datasets/issues/5345
print("\n Checking all audio dtype is float32 or not... \n")
print(f'Common Voice Train: {common_voice["train"][0]["audio"]["array"].dtype}')
print(f'Common Voice Test: {common_voice["test"][0]["audio"]["array"].dtype}')
print(f'Google Fleurs Train: {google_fleurs["train"][0]["audio"]["array"].dtype}')
print(f'Google Fleurs Test: {google_fleurs["test"][0]["audio"]["array"].dtype}')
print(f'OpenSlR: {openslr["train"][0]["audio"]["array"].dtype}')
print(f'CRBLP: {crblp[0]["audio"]["array"].dtype}')
print("\n")
## merge the three datasets
# my_dataset['train'] = concatenate_datasets([common_voice['train'], google_fleurs['train'], openslr['train']]) #for linux
my_dataset['train'] = concatenate_datasets([common_voice['train'], google_fleurs['train'], openslr['train'], crblp]) #for linux
# my_dataset['train'] = concatenate_datasets([common_voice['train'], openslr['train']])
# my_dataset['train'] = concatenate_datasets([google_fleurs['train'], openslr['train']]) #for windows no commonvoice as it requires ffmpeg-4
# my_dataset['train'] = google_fleurs['train']
my_dataset['test'] = concatenate_datasets([common_voice['test'], google_fleurs['test']]) #for linux
# my_dataset['test'] = common_voice['test']
# my_dataset['test'] = concatenate_datasets([google_fleurs['test']]) #for windows no commonvoice as it requires ffmpeg-4
#shuffle train set with seed=42
my_dataset['train'] = my_dataset['train'].shuffle(seed=10)
print("\n\n AFTER MERGING, train and validation sets are: ")
print(my_dataset)
print("\n")
## 6. Augmentation
print("\n\n Augmenting Datasets...this might take a while..\n\n")
from audiomentations import (
AddBackgroundNoise,
AddGaussianNoise,
Compose,
Gain,
OneOf,
PitchShift,
PolarityInversion,
TimeStretch,
)
# define augmentation
augmentation = Compose(
[
TimeStretch(min_rate=0.9, max_rate=1.1, p=0.2, leave_length_unchanged=False),
Gain(min_gain_in_db=-6, max_gain_in_db=6, p=0.1),
PitchShift(min_semitones=-4, max_semitones=4, p=0.2),
AddGaussianNoise(min_amplitude=0.005, max_amplitude=0.015, p=1.0),
]
)
def augment_dataset(batch):
# load and (possibly) resample audio data to 16kHz
sample = batch['audio']
# apply augmentation
augmented_waveform = augmentation(sample["array"], sample_rate=sample["sampling_rate"])
batch['audio']["array"] = augmented_waveform
return batch
# augment training data
augmented_raw_training_dataset = my_dataset["train"].map(
augment_dataset,
num_proc=1,
desc="augment train dataset",
load_from_cache_file=True,
cache_file_name=os.path.join(base_dir, 'datasets_cache', 'augmented_train_cache.arrow')
)
print("\n COMBINING Augmented Dataset with Normal Dataset..... \n")
# combine
my_dataset["train"] = concatenate_datasets([my_dataset["train"], augmented_raw_training_dataset])
my_dataset["train"] = my_dataset["train"].shuffle(seed=42)
# For debugging
# my_dataset["train"] = my_dataset["train"].select(range(2500, 5000))
# my_dataset["test"] = my_dataset["test"].select(range(50))
print("\n\n AFTER AUGMENTATION, FINAL train and validation sets are: ")
print("\n FINAL DATASET: \n")
print(my_dataset)
# #debugging
# print("\n EXITING \n")
# import sys
# sys.exit()
## 7. Prepare Feature Extractor, Tokenizer and Processor
from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperTokenizerFast, WhisperProcessor
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name)
## No need as tokenizer gets already loaded while loading the processor
# tokenizer = WhisperTokenizer.from_pretrained(model_name, language=language, task=task)
# tokenizer = WhisperTokenizerFast.from_pretrained(model_name, language=language, task=task)
processor = WhisperProcessor.from_pretrained(model_name, language=language, task=task)
## 8. Preprocessing Data
print("\n\n Preprocessing Datasets...this might take a while..\n\n")
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from bnunicodenormalizer import Normalizer
import unicodedata
import re
do_lower_case = False
do_remove_punctuation = False
do_bangla_unicode_normalization = True
normalizer = BasicTextNormalizer()
bangla_normalizer = Normalizer(allow_english=True)
def removeOptionalZW(text):
"""
Removes all optional occurrences of ZWNJ or ZWJ from Bangla text.
"""
# Regex for matching zero witdh joiner variations.
STANDARDIZE_ZW = re.compile(r'(?<=\u09b0)[\u200c\u200d]+(?=\u09cd\u09af)')
# Regex for removing standardized zero width joiner, except in edge cases.
DELETE_ZW = re.compile(r'(?<!\u09b0)[\u200c\u200d](?!\u09cd\u09af)')
text = STANDARDIZE_ZW.sub('\u200D', text)
text = DELETE_ZW.sub('', text)
return text
def prepare_dataset(batch):
# load and (possibly) resample audio data to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
inputs = processor.feature_extractor(
audio["array"],
sampling_rate=audio["sampling_rate"],
return_attention_mask=apply_spec_augment,
)
batch["input_features"] = inputs.input_features[0]
# compute input length
batch["input_length"] = len(batch["audio"])
# if spec augmentation applied, get attention_mask to guide the mask along time axis
if apply_spec_augment:
batch["attention_mask"] = inputs.get("attention_mask")[0]
# optional pre-processing steps
transcription = batch["sentence"]
if do_lower_case:
transcription = transcription.lower()
if do_remove_punctuation:
transcription = normalizer(transcription).strip()
if do_bangla_unicode_normalization:
_words = [bangla_normalizer(word)['normalized'] for word in transcription.split()]
transcription = " ".join([word for word in _words if word is not None])
transcription = transcription.replace("\u2047", "-")
transcription = transcription.replace(u"\u098c", u"\u09ef")
transcription = unicodedata.normalize("NFC", transcription)
transcription = removeOptionalZW(transcription)
# encode target text to label ids
batch["labels"] = processor.tokenizer(transcription).input_ids
# compute labels length **with** special tokens! -> total label length
batch["labels_length"] = len(batch["labels"])
return batch
## my_dataset is DatasetDict dictionary whereas my_dataset["train"] is Dataset Object.
## map function parameters for both are different!
## see: https://github.com/huggingface/datasets/issues/2407
## This,
my_dataset = my_dataset.map(prepare_dataset,
num_proc=1, # if num_proc>1, then mapping might get stuck. use num_proc=1 in that case.
load_from_cache_file=True,
cache_file_names={
"train" : os.path.join(base_dir, 'datasets_cache', 'preprocessed_train_cache.arrow'),
"test" : os.path.join(base_dir, 'datasets_cache', 'preprocessed_test_cache.arrow'),
}
)
## OR this,
# my_dataset["train"] = my_dataset["train"].map(
# prepare_dataset,
# num_proc=4, # if num_proc>1, then mapping might get stuck. use num_proc=1 in that case.
# load_from_cache_file=True,
# cache_file_name=os.path.join(base_dir, 'datasets_cache', 'preprocessed_train_cache.arrow')
# )
# my_dataset["test"] = my_dataset["test"].map(
# prepare_dataset,
# num_proc=4, # if num_proc>1, then mapping might get stuck. use num_proc=1 in that case.
# load_from_cache_file=True,
# cache_file_name=os.path.join(base_dir, 'datasets_cache', 'preprocessed_test_cache.arrow')
# )
print("\n\n AFTER PREPROCESSING, final train and validation sets are: ")
print(my_dataset)
print("\n")
## 9. Filter too Short or too Long Audio Files
MAX_DURATION_IN_SECONDS = 30.0
max_input_length = MAX_DURATION_IN_SECONDS * 16000
def filter_inputs(input_length):
"""Filter inputs with zero input length or longer than 30s"""
return 0 < input_length < max_input_length
my_dataset = my_dataset.filter(filter_inputs, input_columns=["input_length"])
# my_dataset["train"] = my_dataset["train"].filter(
# filter_inputs,
# input_columns=["input_length"],
# )
# my_dataset["test"] = my_dataset["test"].filter(
# filter_inputs,
# input_columns=["input_length"],
# )
print("\n\n AFTER FILTERING INPUTS, final train and validation sets are: ")
print(my_dataset)
print("\n")
max_label_length = generation_max_length #(max_label_length should be equal to max_length of model which is equal to generation_max_length)
def filter_labels(labels_length):
"""Filter label sequences longer than max length (448)"""
return labels_length < max_label_length
my_dataset = my_dataset.filter(filter_labels, input_columns=["labels_length"])
# my_dataset["train"] = my_dataset["train"].filter(
# filter_labels,
# input_columns=["labels_length"],
# )
# my_dataset["test"] = my_dataset["test"].filter(
# filter_labels,
# input_columns=["labels_length"],
# )
print("\n\n AFTER FILTERING LABELS, final train and validation sets are: ")
print(my_dataset)
print("\n")
import re
def filter_transcripts(transcript):
"""Filter transcripts with empty strings and samples containing English characters & numbers"""
pattern = r'^.*[a-zA-Z0-9]+.*$'
match = re.match(pattern, transcript)
return len(transcript.split(" ")) > 1 and not bool(match)
my_dataset = my_dataset.filter(filter_transcripts, input_columns=["sentence"])
# my_dataset["train"] = my_dataset["train"].filter(
# filter_transcripts,
# input_columns=["sentence"],
# )
# my_dataset["test"] = my_dataset["test"].filter(
# filter_transcripts,
# input_columns=["sentence"],
# )
print("\n\n AFTER FILTERING TRANSCRIPTS, final train and validation sets are: ")
print("\n My FINAL DATASET \n")
print(my_dataset)
print("\n")
## 10. Save & Cleanup Cache Files (DON'T save too large datasets..will take up all space!!)
## Only save, if you want it to export it to another PC!!
## Else, map function stores the cache files via cache_file_name parameter!!
# print("\n\n Saving Preprocessed Dataset to Disk..\n\n")
# my_dataset.save_to_disk(os.path.join(base_dir, "datasets_cache"))
## Removes unused cached files & returns the number of removed cache files
print("\n Removing UNUSED Cache Files: \n")
try:
print(f"{common_voice.cleanup_cache_files()} for common_voice")
print(f"{google_fleurs.cleanup_cache_files()} for google_fleurs")
print(f"{openslr.cleanup_cache_files()} for openslr")
print(f"{crblp.cleanup_cache_files()} for crblp")
print(f"{my_dataset.cleanup_cache_files()} for my_dataset")
except Exception as e:
print(f"\n\n UNABLE to REMOVE some Cache files. \n Error: {e} \n\n")
## 11. Load Already Preprocessed Dataset from Disk
## Only load if you have a saved dataset via save_to_disk method!!
## Do Once 4 to 6 and 8 to 10. Then start from 7 and 11. EVERYTIME!!!
# from datasets import load_from_disk
# print("\n\n Loading Preprocessed Dataset from Disk..\n\n")
# my_dataset = load_from_disk(os.path.join(base_dir, "datasets_cache"))
## 12. Define Data Collator
import torch
from dataclasses import dataclass
from typing import Any, Dict, List, Union
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
processor: Any
forward_attention_mask: bool
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need different padding methods
# first treat the audio inputs by simply returning torch tensors
input_features = [{"input_features": feature["input_features"]} for feature in features]
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
if self.forward_attention_mask:
batch["attention_mask"] = torch.LongTensor([feature["attention_mask"] for feature in features])
# get the tokenized label sequences
label_features = [{"input_ids": feature["labels"]} for feature in features]
# pad the labels to max length
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor, forward_attention_mask=apply_spec_augment)
## 13. Define Evaluation Metrics
import evaluate
wer_metric = evaluate.load("wer", cache_dir=os.path.join(base_dir, "metrics_cache"))
cer_metric = evaluate.load("cer", cache_dir=os.path.join(base_dir, "metrics_cache"))
do_normalize_eval = True
def compute_metrics(pred):
pred_ids = pred.predictions
label_ids = pred.label_ids
# replace -100 with the pad_token_id
label_ids[label_ids == -100] = processor.tokenizer.pad_token_id
# we do not want to group tokens when computing the metrics
pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)
if do_normalize_eval:
pred_str = [normalizer(pred) for pred in pred_str]
label_str = [normalizer(label) for label in label_str]
wer = 100 * wer_metric.compute(predictions=pred_str, references=label_str)
cer = 100 * cer_metric.compute(predictions=pred_str, references=label_str)
return {"cer": cer, "wer": wer}
## 14. Load a Pre-Trained Checkpoint
print("\n\n Loading Model to Device..\n\n")
from transformers import WhisperForConditionalGeneration
model = WhisperForConditionalGeneration.from_pretrained(model_name)
model = model.to(device)
## 15. Override generation arguments
model.config.apply_spec_augment = apply_spec_augment
model.config.max_length = generation_max_length
model.config.dropout = dropout
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
if gradient_checkpointing:
model.config.use_cache = False
if freeze_feature_encoder:
model.freeze_feature_encoder()
model.generation_config.max_length = generation_max_length
## 16. Define the Training Configuration
from transformers import Seq2SeqTrainingArguments
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
overwrite_output_dir=overwrite_output_dir,
max_steps=max_steps,
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=gradient_checkpointing,
dataloader_num_workers=dataloader_num_workers,
evaluation_strategy=evaluation_strategy,
eval_steps=eval_steps,
save_strategy=save_strategy,
save_steps=save_steps,
save_total_limit=save_total_limit,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
warmup_steps=warmup_steps,
logging_steps=logging_steps,
weight_decay=weight_decay,
load_best_model_at_end=load_best_model_at_end,
metric_for_best_model=metric_for_best_model,
greater_is_better=greater_is_better,
bf16=bf16,
tf32=tf32,
torch_compile=torch_compile,
optim=optim,
generation_max_length=generation_max_length,
report_to=report_to,
predict_with_generate=predict_with_generate,
push_to_hub=push_to_hub,
)
from transformers import Seq2SeqTrainer
import transformers as tf
trainer = Seq2SeqTrainer(
args=training_args,
model=model,
train_dataset=my_dataset["train"],
eval_dataset=my_dataset["test"],
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=processor.feature_extractor,
callbacks=[tf.EarlyStoppingCallback(early_stopping_patience=early_stopping_patience)],
)
## We'll save the processor object once before starting training. Since the processor is not trainable, it won't change over the course of training.
## The checkpoint dirs don't save the processor files:
## (added_tokens.json, merges.txt, normalizer.json, special_tokens_map.json, tokenizer_config.json, vocab.json)
## So, we save beforehand the processor in the best_model directory.
## This is done so that if we stop training earlier than expected,
## then we can copy the above files from the best_model dir to the checkpoint folder
## to load the processor and run the model from the checkpoint dir.
# No need to create best_model folder as trainer automatically creates it!
# if not os.path.exists("best_model"):
# os.makedirs("best_model")
processor.save_pretrained("best_model")
## 17. Training
print("\n\n Training STARTED..\n\n")
train_result = trainer.train()
## resume from the latest checkpoint
# train_result = trainer.train(resume_from_checkpoint=True)
## resume training from the specific checkpoint in the directory passed
# train_result = trainer.train(resume_from_checkpoint="checkpoint-4000")
print("\n\n Training COMPLETED...\n\n")
## 18. Evaluating & Saving Metrics & Model
print("\n\n Evaluating Model & Saving Metrics...\n\n")
processor.save_pretrained(save_directory=output_dir)
# trainer.save_model()
metrics = train_result.metrics
trainer.save_metrics("train", metrics)
trainer.save_state()
metrics = trainer.evaluate(
metric_key_prefix="eval",
max_length=training_args.generation_max_length,
num_beams=training_args.generation_num_beams,
)
trainer.save_metrics("eval", metrics)
## 19. Push to Hub
if push_to_hub:
print("\n\n Pushing to Hub...\n\n")
trainer.create_model_card()
# kwargs = {
# # "dataset_tags": ["mozilla-foundation/common_voice_11_0", "google/fleurs", "openslr"],
# "dataset_tags": ["mozilla-foundation/common_voice_11_0", "google/fleurs"],
# # "dataset_tags": ["mozilla-foundation/common_voice_11_0", "openslr"],
# # "dataset": ["common-voice-11", "google-fleurs", "openslr53"], # a 'pretty' name for the training dataset
# "dataset": ["common-voice-11", "google-fleurs"], # a 'pretty' name for the training dataset
# # "dataset": "common-voice-11+openslr53", # a 'pretty' name for the training dataset
# "language": "bn",
# "model_name": "Whisper Small - Mohammed Rakib", # a 'pretty' name for your model
# "finetuned_from": "Rakib/whisper-small-bn-all-600",
# "tasks": "automatic-speech-recognition",
# "tags": "whisper-event",
# }
# trainer.push_to_hub(**kwargs)
trainer.push_to_hub()
print("\n\n DONEEEEEE \n\n")
|