File size: 27,905 Bytes
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd97db
5c20d4e
ccd97db
5c20d4e
 
 
 
 
 
 
 
 
ccd97db
5c20d4e
ccd97db
5c20d4e
 
 
 
ccd97db
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
ccd97db
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd97db
 
 
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd97db
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd97db
 
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd97db
5c20d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
## Dependencies (run in the venv before running this script)
# pip install git+https://github.com/huggingface/datasets git+https://github.com/huggingface/transformers 
# pip install huggingface_hub ipywidgets librosa evaluate>=0.3.0 jiwer bnunicodenormalizer
# pip install tensorboardX
# sudo add-apt-repository -y ppa:jonathonf/ffmpeg-4
# sudo apt update
# sudo apt install -y ffmpeg
#sudo apt-get install git-lfs


## Run the following commands separately before running the py version of this notebook to connect to HuggningFace Hub!
#   git config --global credential.helper store
#   huggingface-cli login
## Enter your token by visiting: https://huggingface.co/settings/tokens
## Create a repo in the hub:
#   huggingface-cli repo create whisper-small-es OR, huggingface-cli repo create <repo_name/model_name>
## Install git lfs and clone the just created repo
#   git lfs install
#   git clone <repo_link>
## cd to the cloned repo and copy (cp) this python script or everything in training dir to that repo
#   cd <repo_name/model_name>
#   cp /home/mamun/asr_training/Govt_Speech_Demo/training/my-training.py .


#For more details: https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event



## 1. Setting Up Environment Variables & Devices
import os
import torch

abs_path = os.path.abspath('.')
# base_dir = os.path.dirname(os.path.dirname(abs_path))
base_dir = os.path.dirname(abs_path)

os.environ['TRANSFORMERS_CACHE'] = os.path.join(base_dir, 'models_cache')
os.environ['TRANSFORMERS_OFFLINE'] = '0'
os.environ['HF_DATASETS_CACHE'] = os.path.join(base_dir, 'datasets_cache')
os.environ['HF_DATASETS_OFFLINE'] = '0'

# device = "GPU" if torch.cuda.is_available() else "CPU"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"\n\n Device to be used: {device} \n\n")


## 2. Setting Up Variables
# model_name = "openai/whisper-tiny"
model_name = "openai/whisper-small"
# model_name = "openai/whisper-large-v2"

language = "Bengali"
task = "transcribe" # transcribe or translate
print(f"\n\n Loading {model_name} for {language} to {task}...this might take a while.. \n\n")


## 3. Setting Up Training Args
output_dir = "./" 
overwrite_output_dir = True
max_steps = 40000
# max_steps = 5
per_device_train_batch_size = 4
# per_device_train_batch_size = 1 
per_device_eval_batch_size = 32 
# per_device_eval_batch_size = 1 
gradient_accumulation_steps = 16 
# gradient_accumulation_steps = 1 
dataloader_num_workers = 0 #Default: 0 and 0 for Windows
gradient_checkpointing = False 
evaluation_strategy ="steps" 
# eval_steps = 5
eval_steps = 1000 
save_strategy = "steps" 
save_steps = 1000
# save_steps = 5
save_total_limit = 5 
learning_rate = 1e-5 
lr_scheduler_type = "cosine" # "constant", "constant_with_warmup", "cosine", "cosine_with_restarts", "linear"(default), "polynomial", "inverse_sqrt"
warmup_steps = 8000 # (1 epoch)
# warmup_steps = 1 
logging_steps = 25
# logging_steps = 1
# weight_decay = 0.01
weight_decay = 0 
dropout = 0.1  # any value > 0.1 hurts performance. So, use values between 0.0 and 0.1
load_best_model_at_end = True 
metric_for_best_model = "wer" 
greater_is_better = False 
bf16 = True 
# bf16 = False
tf32 = True 
# tf32 = False
generation_max_length = 448 # ensure that the generation_max_length is equal to model max_length. model max_length = 448 for whisper-small (see config.json).
report_to = ["tensorboard"] 
predict_with_generate = True
push_to_hub = True
# push_to_hub = False
freeze_feature_encoder = False 
early_stopping_patience = 10
apply_spec_augment = True
torch_compile = False #Windows not yet supported
optim="adamw_hf" # adamw_hf (default), adamw_torch, adamw_torch_fused (improved), adamw_apex_fused, adamw_anyprecision or adafactor


## 4. Load Datasets
print("\n\n Loading Datasets...this might take a while..\n\n")

from datasets import load_dataset, DatasetDict, Features, Value, Audio

common_voice = DatasetDict()
google_fleurs = DatasetDict()
openslr = DatasetDict()
## commonvoice_11.0 + google_fleurs + openslr53
my_dataset = DatasetDict()

common_voice["train"] = load_dataset("mozilla-foundation/common_voice_11_0", "bn", split="train+validation", cache_dir=os.path.join(base_dir, 'datasets_cache'))
google_fleurs["train"] = load_dataset("google/fleurs", "bn_in", split="train+validation", cache_dir=os.path.join(base_dir, 'datasets_cache'))
openslr = load_dataset("openslr", "SLR53", cache_dir=os.path.join(base_dir, 'datasets_cache'))

# loading crblp dataset
features = Features(
    {
        "text": Value("string"), 
        'path': Value('string'),
        "audio": Audio(sampling_rate=16000)
    }
)

crblp = load_dataset(
    'csv', 
    data_files='D:/Govt_Speech_Demo/crblp_speech_corpus/crblp_train.csv', 
    split='train',
    cache_dir=os.path.join(base_dir, 'datasets_cache'),
    features=features
    )


common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", "bn", split="test", cache_dir=os.path.join(base_dir, 'datasets_cache'))
google_fleurs["test"] = load_dataset("google/fleurs", "bn_in", split="test", cache_dir=os.path.join(base_dir, 'datasets_cache'))


# see count of samples in each dataset
print("\n\n Datasets Loaded \n\n")
print(common_voice)
print(google_fleurs)
print(openslr)
print(crblp)


## 5. Small Subset for Testing
# common_voice['train']  = common_voice['train'].select(range(50))
# common_voice['test']  = common_voice['test'].select(range(50))
# google_fleurs['train']  = google_fleurs['train'].select(range(50))
# google_fleurs['test']  = google_fleurs['test'].select(range(50))
# openslr['train'] = openslr['train'].select(range(50))
# crblp = crblp.select(range(50))

# print("\n\n For testing, the small subsets are:")
# print(common_voice)
# print(google_fleurs)
# print(openslr)
# print(crblp)
# print("\n")

# print("\n EXITING \n")
# import sys
# sys.exit()


## Removing bad samples from common_voice based on upvotes and downvotes
print("\n BEFORE Filtering by Upvotes (Common Voice): \n")
print(common_voice["train"])
# FILTERING!!! Will get 37k Data if >0 and will get 201k Data if >=0 out of 207k
common_voice["train"] = common_voice["train"].filter(lambda x: (x["up_votes"] - x["down_votes"]) >= 0, num_proc=None)
print("\n AFTER Filtering by Upvotes (Common Voice): \n")
print(common_voice["train"])


## REMOVE Corrupt Files (Only required if you use the "other" split of Common Voice)
# skipFiles = open("corrupt_files.txt").read().splitlines()
# skipFiles = skipFiles[3:]
# length = len(skipFiles)
# first = skipFiles[0]
# last = skipFiles[-1]
# print(f"\n No. of corrupt files: {length}, First: {first}, Last {last}\n")

# print("\n Finding indexes of corrupt files... \n")
# from tqdm import tqdm
# count=0
# error_index = []
# for i in tqdm(range(len(common_voice["train"]))):
#     path = common_voice["train"][i]["path"].split("/")[-1].split(".")[0]
#     if path in skipFiles:
#         # print(path)
#         count+=1
#         error_index.append(i)
# print(f"\n Total Corrupt Files: {count} \n")

# print("\n Removing corrupt files from the Common Voice dataset...\n")
# common_voice["train"] = common_voice["train"].filter(lambda example, idx: idx not in error_index, with_indices=True)


print("\n\n So, the datasets to be trained are: \n\n")
print("\n Common Voice 11.0 - Bangla\n")
print(common_voice)
print("\n Google Fleurs - Bangla \n")
print(google_fleurs)
print("\n OpenSLR-53 - Bangla \n")
print(openslr)
print("\n CRBLP - Bangla \n")
print(crblp)
print("\n")



## 6. Merge Datasets
from datasets import concatenate_datasets, Audio

sampling_rate = 16000

## resample to specified sampling rate
common_voice = common_voice.cast_column("audio", Audio(sampling_rate))
google_fleurs = google_fleurs.cast_column("audio", Audio(sampling_rate))
openslr = openslr.cast_column("audio", Audio(sampling_rate))
crblp = crblp.cast_column("audio", Audio(sampling_rate))

## normalise columns to ["audio", "sentence"]
common_voice = common_voice.remove_columns(
    set(common_voice['test'].features.keys()) - {"audio", "sentence"}
)

google_fleurs = google_fleurs.rename_column("raw_transcription", "sentence")
google_fleurs = google_fleurs.remove_columns(
    set(google_fleurs['test'].features.keys()) - {"audio", "sentence"}
)

openslr = openslr.remove_columns(
    set(openslr['train'].features.keys()) - {"audio", "sentence"}
)

crblp = crblp.rename_column("text", "sentence")
crblp = crblp.remove_columns(
    set(crblp.features.keys()) - {"audio", "sentence"}
)

## check if all audio are in float32 dtype or not.
## a fix is: https://github.com/huggingface/datasets/issues/5345
print("\n Checking all audio dtype is float32 or not... \n")
print(f'Common Voice Train: {common_voice["train"][0]["audio"]["array"].dtype}')
print(f'Common Voice Test: {common_voice["test"][0]["audio"]["array"].dtype}')
print(f'Google Fleurs Train: {google_fleurs["train"][0]["audio"]["array"].dtype}')
print(f'Google Fleurs Test: {google_fleurs["test"][0]["audio"]["array"].dtype}')
print(f'OpenSlR: {openslr["train"][0]["audio"]["array"].dtype}')
print(f'CRBLP: {crblp[0]["audio"]["array"].dtype}')
print("\n")


## merge the three datasets
# my_dataset['train'] = concatenate_datasets([common_voice['train'], google_fleurs['train'], openslr['train']]) #for linux
my_dataset['train'] = concatenate_datasets([common_voice['train'], google_fleurs['train'], openslr['train'], crblp]) #for linux
# my_dataset['train'] = concatenate_datasets([common_voice['train'], openslr['train']])
# my_dataset['train'] = concatenate_datasets([google_fleurs['train'], openslr['train']]) #for windows no commonvoice as it requires ffmpeg-4
# my_dataset['train'] = google_fleurs['train']
my_dataset['test'] = concatenate_datasets([common_voice['test'], google_fleurs['test']]) #for linux
# my_dataset['test'] = common_voice['test']
# my_dataset['test'] = concatenate_datasets([google_fleurs['test']]) #for windows no commonvoice as it requires ffmpeg-4

#shuffle train set with seed=42
my_dataset['train'] = my_dataset['train'].shuffle(seed=10)

print("\n\n AFTER MERGING, train and validation sets are: ")
print(my_dataset)
print("\n")


## 6. Augmentation
print("\n\n Augmenting Datasets...this might take a while..\n\n")
from audiomentations import (
    AddBackgroundNoise,
    AddGaussianNoise,
    Compose,
    Gain,
    OneOf,
    PitchShift,
    PolarityInversion,
    TimeStretch,
)

# define augmentation
augmentation = Compose(
    [
        TimeStretch(min_rate=0.9, max_rate=1.1, p=0.2, leave_length_unchanged=False),
        Gain(min_gain_in_db=-6, max_gain_in_db=6, p=0.1),
        PitchShift(min_semitones=-4, max_semitones=4, p=0.2),
        AddGaussianNoise(min_amplitude=0.005, max_amplitude=0.015, p=1.0),
    ]
)

def augment_dataset(batch):
    # load and (possibly) resample audio data to 16kHz
    sample = batch['audio']

    # apply augmentation
    augmented_waveform = augmentation(sample["array"], sample_rate=sample["sampling_rate"])
    batch['audio']["array"] = augmented_waveform
    return batch

# augment training data
augmented_raw_training_dataset = my_dataset["train"].map(
    augment_dataset, 
    num_proc=1, 
    desc="augment train dataset",
    load_from_cache_file=True, 
    cache_file_name=os.path.join(base_dir, 'datasets_cache', 'augmented_train_cache.arrow')
)

print("\n COMBINING Augmented Dataset with Normal Dataset..... \n")
# combine
my_dataset["train"] = concatenate_datasets([my_dataset["train"], augmented_raw_training_dataset])
my_dataset["train"] = my_dataset["train"].shuffle(seed=42)


# For debugging
# my_dataset["train"] = my_dataset["train"].select(range(2500, 5000))
# my_dataset["test"] = my_dataset["test"].select(range(50))

print("\n\n AFTER AUGMENTATION, FINAL train and validation sets are: ")
print("\n FINAL DATASET: \n")
print(my_dataset)

# #debugging
# print("\n EXITING \n")
# import sys
# sys.exit()

## 7. Prepare Feature Extractor, Tokenizer and Processor
from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperTokenizerFast, WhisperProcessor

feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name)

## No need as tokenizer gets already loaded while loading the processor
# tokenizer = WhisperTokenizer.from_pretrained(model_name, language=language, task=task)
# tokenizer = WhisperTokenizerFast.from_pretrained(model_name, language=language, task=task)

processor = WhisperProcessor.from_pretrained(model_name, language=language, task=task)


## 8. Preprocessing Data
print("\n\n Preprocessing Datasets...this might take a while..\n\n")

from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from bnunicodenormalizer import Normalizer
import unicodedata
import re

do_lower_case = False
do_remove_punctuation = False
do_bangla_unicode_normalization = True

normalizer = BasicTextNormalizer()
bangla_normalizer = Normalizer(allow_english=True)


def removeOptionalZW(text):
    """
    Removes all optional occurrences of ZWNJ or ZWJ from Bangla text.
    """
    # Regex for matching zero witdh joiner variations.
    STANDARDIZE_ZW = re.compile(r'(?<=\u09b0)[\u200c\u200d]+(?=\u09cd\u09af)')

    # Regex for removing standardized zero width joiner, except in edge cases.
    DELETE_ZW = re.compile(r'(?<!\u09b0)[\u200c\u200d](?!\u09cd\u09af)')
    
    text = STANDARDIZE_ZW.sub('\u200D', text)
    text = DELETE_ZW.sub('', text)
    return text


def prepare_dataset(batch):
    # load and (possibly) resample audio data to 16kHz
    audio = batch["audio"]

    # compute log-Mel input features from input audio array 
    inputs = processor.feature_extractor(
        audio["array"], 
        sampling_rate=audio["sampling_rate"], 
        return_attention_mask=apply_spec_augment,
        )
    batch["input_features"] = inputs.input_features[0]

    # compute input length
    batch["input_length"] = len(batch["audio"])
    
    # if spec augmentation applied, get attention_mask to guide the mask along time axis
    if apply_spec_augment:
        batch["attention_mask"] = inputs.get("attention_mask")[0]
    
    
    # optional pre-processing steps
    transcription = batch["sentence"]
    if do_lower_case:
        transcription = transcription.lower()
    if do_remove_punctuation:
        transcription = normalizer(transcription).strip()
    if do_bangla_unicode_normalization:
        _words = [bangla_normalizer(word)['normalized'] for word in transcription.split()]
        transcription = " ".join([word for word in _words if word is not None])
        transcription = transcription.replace("\u2047", "-")
        transcription = transcription.replace(u"\u098c", u"\u09ef")
        transcription = unicodedata.normalize("NFC", transcription)
        transcription = removeOptionalZW(transcription)
    
    # encode target text to label ids
    batch["labels"] = processor.tokenizer(transcription).input_ids
    
     # compute labels length **with** special tokens! -> total label length
    batch["labels_length"] = len(batch["labels"])
    
    return batch

## my_dataset is DatasetDict dictionary whereas my_dataset["train"] is Dataset Object.
## map function parameters for both are different!
## see: https://github.com/huggingface/datasets/issues/2407

## This,
my_dataset = my_dataset.map(prepare_dataset, 
                            num_proc=1, # if num_proc>1, then mapping might get stuck. use num_proc=1 in that case.
                            load_from_cache_file=True, 
                            cache_file_names={
                                "train" : os.path.join(base_dir, 'datasets_cache', 'preprocessed_train_cache.arrow'),
                                "test" : os.path.join(base_dir, 'datasets_cache', 'preprocessed_test_cache.arrow'),
                                }
                            )
## OR this,
# my_dataset["train"] = my_dataset["train"].map(
#                             prepare_dataset, 
#                             num_proc=4, # if num_proc>1, then mapping might get stuck. use num_proc=1 in that case.
#                             load_from_cache_file=True, 
#                             cache_file_name=os.path.join(base_dir, 'datasets_cache', 'preprocessed_train_cache.arrow')
#                             )

# my_dataset["test"] = my_dataset["test"].map(
#                             prepare_dataset, 
#                             num_proc=4, # if num_proc>1, then mapping might get stuck. use num_proc=1 in that case.
#                             load_from_cache_file=True, 
#                             cache_file_name=os.path.join(base_dir, 'datasets_cache', 'preprocessed_test_cache.arrow')
#                             )


print("\n\n AFTER PREPROCESSING, final train and validation sets are: ")
print(my_dataset)
print("\n")

## 9. Filter too Short or too Long Audio Files
MAX_DURATION_IN_SECONDS = 30.0
max_input_length = MAX_DURATION_IN_SECONDS * 16000

def filter_inputs(input_length):
    """Filter inputs with zero input length or longer than 30s"""
    return 0 < input_length < max_input_length

my_dataset = my_dataset.filter(filter_inputs, input_columns=["input_length"])

# my_dataset["train"] = my_dataset["train"].filter(
#     filter_inputs,
#     input_columns=["input_length"],
# )
# my_dataset["test"] = my_dataset["test"].filter(
#     filter_inputs,
#     input_columns=["input_length"],
# )

print("\n\n AFTER FILTERING INPUTS, final train and validation sets are: ")
print(my_dataset)
print("\n")

max_label_length = generation_max_length #(max_label_length should be equal to max_length of model which is equal to generation_max_length)

def filter_labels(labels_length):
    """Filter label sequences longer than max length (448)"""
    return labels_length < max_label_length

my_dataset = my_dataset.filter(filter_labels, input_columns=["labels_length"])

# my_dataset["train"] = my_dataset["train"].filter(
#     filter_labels,
#     input_columns=["labels_length"],
# )

# my_dataset["test"] = my_dataset["test"].filter(
#     filter_labels,
#     input_columns=["labels_length"],
# )

print("\n\n AFTER FILTERING LABELS, final train and validation sets are: ")
print(my_dataset)
print("\n")


import re
def filter_transcripts(transcript):
    """Filter transcripts with empty strings and samples containing English characters & numbers"""
    pattern = r'^.*[a-zA-Z0-9]+.*$'
    match = re.match(pattern, transcript)
    return len(transcript.split(" ")) > 1 and not bool(match)

my_dataset = my_dataset.filter(filter_transcripts, input_columns=["sentence"])

# my_dataset["train"] = my_dataset["train"].filter(
#     filter_transcripts,
#     input_columns=["sentence"],
# )
# my_dataset["test"] = my_dataset["test"].filter(
#     filter_transcripts,
#     input_columns=["sentence"],
# )

print("\n\n AFTER FILTERING TRANSCRIPTS, final train and validation sets are: ")
print("\n My FINAL DATASET \n")
print(my_dataset)
print("\n")


## 10. Save & Cleanup Cache Files (DON'T save too large datasets..will take up all space!!)
## Only save, if you want it to export it to another PC!! 
## Else, map function stores the cache files via cache_file_name parameter!!

# print("\n\n Saving Preprocessed Dataset to Disk..\n\n")

# my_dataset.save_to_disk(os.path.join(base_dir, "datasets_cache"))

## Removes unused cached files & returns the number of removed cache files
print("\n Removing UNUSED Cache Files: \n")
try:
    print(f"{common_voice.cleanup_cache_files()} for common_voice")
    print(f"{google_fleurs.cleanup_cache_files()} for google_fleurs")
    print(f"{openslr.cleanup_cache_files()} for openslr")
    print(f"{crblp.cleanup_cache_files()} for crblp")
    print(f"{my_dataset.cleanup_cache_files()} for my_dataset")
  
except Exception as e:
    print(f"\n\n UNABLE to REMOVE some Cache files. \n Error: {e} \n\n")


## 11. Load Already Preprocessed Dataset from Disk
## Only load if you have a saved dataset via save_to_disk method!!
## Do Once 4 to 6 and 8 to 10. Then start from 7 and 11. EVERYTIME!!!

# from datasets import load_from_disk
# print("\n\n Loading Preprocessed Dataset from Disk..\n\n")

# my_dataset = load_from_disk(os.path.join(base_dir, "datasets_cache"))


## 12. Define Data Collator
import torch
from dataclasses import dataclass
from typing import Any, Dict, List, Union

@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
    processor: Any
    forward_attention_mask: bool

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need different padding methods
        # first treat the audio inputs by simply returning torch tensors
        input_features = [{"input_features": feature["input_features"]} for feature in features]
        batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")

        if self.forward_attention_mask:
            batch["attention_mask"] = torch.LongTensor([feature["attention_mask"] for feature in features])
        
        # get the tokenized label sequences
        label_features = [{"input_ids": feature["labels"]} for feature in features]
        # pad the labels to max length
        labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")

        # replace padding with -100 to ignore loss correctly
        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        # if bos token is appended in previous tokenization step,
        # cut bos token here as it's append later anyways
        if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
            labels = labels[:, 1:]

        batch["labels"] = labels

        return batch



data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor, forward_attention_mask=apply_spec_augment)



## 13. Define Evaluation Metrics
import evaluate

wer_metric = evaluate.load("wer", cache_dir=os.path.join(base_dir, "metrics_cache"))
cer_metric = evaluate.load("cer", cache_dir=os.path.join(base_dir, "metrics_cache"))

do_normalize_eval = True

def compute_metrics(pred):
    pred_ids = pred.predictions
    label_ids = pred.label_ids

    # replace -100 with the pad_token_id
    label_ids[label_ids == -100] = processor.tokenizer.pad_token_id

    # we do not want to group tokens when computing the metrics
    pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
    label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)

    if do_normalize_eval:
        pred_str = [normalizer(pred) for pred in pred_str]
        label_str = [normalizer(label) for label in label_str]

    wer = 100 * wer_metric.compute(predictions=pred_str, references=label_str)
    cer = 100 * cer_metric.compute(predictions=pred_str, references=label_str)

    return {"cer": cer, "wer": wer}


## 14. Load a Pre-Trained Checkpoint
print("\n\n Loading Model to Device..\n\n")

from transformers import WhisperForConditionalGeneration

model = WhisperForConditionalGeneration.from_pretrained(model_name)
model = model.to(device)


## 15. Override generation arguments
model.config.apply_spec_augment = apply_spec_augment
model.config.max_length = generation_max_length
model.config.dropout = dropout
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
if gradient_checkpointing:
    model.config.use_cache = False
if freeze_feature_encoder:
    model.freeze_feature_encoder()

model.generation_config.max_length = generation_max_length

## 16. Define the Training Configuration
from transformers import Seq2SeqTrainingArguments

training_args = Seq2SeqTrainingArguments(
    output_dir=output_dir,
    overwrite_output_dir=overwrite_output_dir,
    max_steps=max_steps,
    per_device_train_batch_size=per_device_train_batch_size,
    per_device_eval_batch_size=per_device_eval_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    gradient_checkpointing=gradient_checkpointing,
    dataloader_num_workers=dataloader_num_workers,
    evaluation_strategy=evaluation_strategy,
    eval_steps=eval_steps,
    save_strategy=save_strategy,
    save_steps=save_steps,
    save_total_limit=save_total_limit,
    learning_rate=learning_rate,
    lr_scheduler_type=lr_scheduler_type,
    warmup_steps=warmup_steps,
    logging_steps=logging_steps,
    weight_decay=weight_decay,
    load_best_model_at_end=load_best_model_at_end,
    metric_for_best_model=metric_for_best_model,
    greater_is_better=greater_is_better,
    bf16=bf16,
    tf32=tf32,
    torch_compile=torch_compile,
    optim=optim,
    generation_max_length=generation_max_length,
    report_to=report_to,
    predict_with_generate=predict_with_generate,
    push_to_hub=push_to_hub,
)

from transformers import Seq2SeqTrainer
import transformers as tf

trainer = Seq2SeqTrainer(
    args=training_args,
    model=model,
    train_dataset=my_dataset["train"],
    eval_dataset=my_dataset["test"],
    data_collator=data_collator,
    compute_metrics=compute_metrics,
    tokenizer=processor.feature_extractor,
    callbacks=[tf.EarlyStoppingCallback(early_stopping_patience=early_stopping_patience)],
)

## We'll save the processor object once before starting training. Since the processor is not trainable, it won't change over the course of training.
## The checkpoint dirs don't save the processor files: 
## (added_tokens.json, merges.txt, normalizer.json, special_tokens_map.json, tokenizer_config.json, vocab.json)
## So, we save beforehand the processor in the best_model directory. 
## This is done so that if we stop training earlier than expected, 
## then we can copy the above files from the best_model dir to the checkpoint folder 
## to load the processor and run the model from the checkpoint dir.

# No need to create best_model folder as trainer automatically creates it!
# if not os.path.exists("best_model"):
#     os.makedirs("best_model")
processor.save_pretrained("best_model")


## 17. Training
print("\n\n Training STARTED..\n\n")

train_result = trainer.train()

## resume from the latest checkpoint
# train_result = trainer.train(resume_from_checkpoint=True)

## resume training from the specific checkpoint in the directory passed
# train_result = trainer.train(resume_from_checkpoint="checkpoint-4000")

print("\n\n Training COMPLETED...\n\n")


## 18. Evaluating & Saving Metrics & Model
print("\n\n Evaluating Model & Saving Metrics...\n\n")

processor.save_pretrained(save_directory=output_dir)
# trainer.save_model() 

metrics = train_result.metrics
trainer.save_metrics("train", metrics)
trainer.save_state()

metrics = trainer.evaluate(
    metric_key_prefix="eval",
    max_length=training_args.generation_max_length,
    num_beams=training_args.generation_num_beams,
)

trainer.save_metrics("eval", metrics)


## 19. Push to Hub
if push_to_hub:
    print("\n\n Pushing to Hub...\n\n")
    
    trainer.create_model_card()
    # kwargs = {
    #     # "dataset_tags": ["mozilla-foundation/common_voice_11_0", "google/fleurs", "openslr"],
    #     "dataset_tags": ["mozilla-foundation/common_voice_11_0", "google/fleurs"],
    #     # "dataset_tags": ["mozilla-foundation/common_voice_11_0", "openslr"],
    #     # "dataset": ["common-voice-11", "google-fleurs", "openslr53"],  # a 'pretty' name for the training dataset
    #     "dataset": ["common-voice-11", "google-fleurs"],  # a 'pretty' name for the training dataset
    #     # "dataset": "common-voice-11+openslr53",  # a 'pretty' name for the training dataset
    #     "language": "bn",
    #     "model_name": "Whisper Small - Mohammed Rakib", # a 'pretty' name for your model
    #     "finetuned_from": "Rakib/whisper-small-bn-all-600",
    #     "tasks": "automatic-speech-recognition",
    #     "tags": "whisper-event",
    # }

    # trainer.push_to_hub(**kwargs)
    trainer.push_to_hub()


print("\n\n DONEEEEEE \n\n")