--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9501488095238095 - name: Recall type: recall value: 0.9558383233532934 - name: F1 type: f1 value: 0.9529850746268657 - name: Accuracy type: accuracy value: 0.9639219015280136 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2004 - Precision: 0.9501 - Recall: 0.9558 - F1: 0.9530 - Accuracy: 0.9639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.5625 | 250 | 1.1111 | 0.6740 | 0.7552 | 0.7123 | 0.7695 | | 1.4577 | 3.125 | 500 | 0.5810 | 0.8362 | 0.8675 | 0.8516 | 0.8697 | | 1.4577 | 4.6875 | 750 | 0.3787 | 0.8903 | 0.9109 | 0.9005 | 0.9219 | | 0.4114 | 6.25 | 1000 | 0.2920 | 0.9167 | 0.9311 | 0.9239 | 0.9406 | | 0.4114 | 7.8125 | 1250 | 0.2640 | 0.9161 | 0.9311 | 0.9235 | 0.9380 | | 0.2215 | 9.375 | 1500 | 0.2366 | 0.9297 | 0.9409 | 0.9353 | 0.9474 | | 0.2215 | 10.9375 | 1750 | 0.2232 | 0.9407 | 0.9491 | 0.9449 | 0.9571 | | 0.1486 | 12.5 | 2000 | 0.2083 | 0.9450 | 0.9513 | 0.9482 | 0.9601 | | 0.1486 | 14.0625 | 2250 | 0.1981 | 0.9480 | 0.9551 | 0.9515 | 0.9639 | | 0.1129 | 15.625 | 2500 | 0.2004 | 0.9501 | 0.9558 | 0.9530 | 0.9639 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0