File size: 1,545 Bytes
012bb16 776f19c 0afc742 776f19c 012bb16 4c6095c 012bb16 4c6095c 012bb16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_ncv
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7012058955
- name: NER Recall
type: recall
value: 0.626746507
- name: NER F Score
type: f_score
value: 0.6618887015
---
## Introduction
Three variants of the model is built with Spacy3 for grant applications.
A simple named entity recognition custom model from scratch with annotation tool prodi.gy.
Github info: https://github.com/RaThorat/ner_model_prodigy
The most general model is 'en_grantss'. The model 'en_ncv' is more suitable to extract entities from narrative CV's.
| Feature | Description |
| --- | --- |
| **Name** | `en_ncv` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.4.3,<3.5.0` |
| **Default Pipeline** | `tok2vec`, `ner` |
| **Components** | `tok2vec`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | narrative CVs |
| **License** | n/a |
| **Author** | [Rahul Thorat]() |
### Label Scheme
<details>
<summary>View label scheme (12 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `ACTIVITY`, `GPE`, `KEYWORD`, `MEDIUM`, `MONEY`, `ORG`, `PERSON`, `POSITION`, `RECOGNITION`, `REPOSITORY`, `WEBSITE`, `YEAR` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 66.19 |
| `ENTS_P` | 70.12 |
| `ENTS_R` | 62.67 |
| `TOK2VEC_LOSS` | 786695.63 |
| `NER_LOSS` | 965558.77 | |