Upload 4 files
Browse files
API_DEMO_CHAT.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
########################################################################################################
|
2 |
+
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
3 |
+
########################################################################################################
|
4 |
+
|
5 |
+
print("RWKV Chat Simple Demo")
|
6 |
+
|
7 |
+
import os, copy, types, gc, sys, re
|
8 |
+
import numpy as np
|
9 |
+
from prompt_toolkit import prompt
|
10 |
+
import torch
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
|
13 |
+
torch.backends.cudnn.benchmark = True
|
14 |
+
torch.backends.cudnn.allow_tf32 = True
|
15 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
16 |
+
os.environ["RWKV_V7_ON"] = "1" # enable this for rwkv-7 models
|
17 |
+
os.environ["RWKV_JIT_ON"] = "1"
|
18 |
+
os.environ["RWKV_CUDA_ON"] = "0" # !!! '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries !!!
|
19 |
+
|
20 |
+
from rwkv.model import RWKV
|
21 |
+
from rwkv.utils import PIPELINE
|
22 |
+
|
23 |
+
########################################################################################################
|
24 |
+
|
25 |
+
args = types.SimpleNamespace()
|
26 |
+
|
27 |
+
args.strategy = "cuda fp16" # use CUDA, fp16
|
28 |
+
|
29 |
+
args.MODEL_NAME = "/home/alic-li/rwkv7-g1-tanslate/rwkv-final-sft-512"
|
30 |
+
|
31 |
+
|
32 |
+
########################################################################################################
|
33 |
+
STATE_NAME = None # use vanilla zero initial state?
|
34 |
+
|
35 |
+
# use custom state? much better chat results (download from https://huggingface.co/BlinkDL/temp-latest-training-models/tree/main)
|
36 |
+
# note: this is English Single-round QA state (will forget what you previously say)
|
37 |
+
# STATE_NAME = "E://RWKV-Runner//models//rwkv-x060-eng_single_round_qa-1B6-20240516-ctx2048"
|
38 |
+
########################################################################################################
|
39 |
+
|
40 |
+
GEN_TEMP = 1.0
|
41 |
+
GEN_TOP_P = 0.3
|
42 |
+
GEN_alpha_presence = 0.5
|
43 |
+
GEN_alpha_frequency = 0.5
|
44 |
+
GEN_penalty_decay = 0.996
|
45 |
+
|
46 |
+
if STATE_NAME != None:
|
47 |
+
GEN_TOP_P = 0.2
|
48 |
+
GEN_alpha_presence = 0.3
|
49 |
+
GEN_alpha_frequency = 0.3
|
50 |
+
|
51 |
+
CHUNK_LEN = 16 # split input into chunks to save VRAM (shorter -> slower, but saves VRAM)
|
52 |
+
|
53 |
+
########################################################################################################
|
54 |
+
|
55 |
+
print(f"Loading model - {args.MODEL_NAME}")
|
56 |
+
model = RWKV(model=args.MODEL_NAME, strategy=args.strategy)
|
57 |
+
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("./MiniMind2_tokenizer")
|
59 |
+
|
60 |
+
model_tokens = []
|
61 |
+
model_state = None
|
62 |
+
|
63 |
+
if STATE_NAME != None: # load custom state
|
64 |
+
args = model.args
|
65 |
+
state_raw = torch.load(STATE_NAME + '.pth')
|
66 |
+
state_init = [None for i in range(args.n_layer * 3)]
|
67 |
+
for i in range(args.n_layer):
|
68 |
+
dd = model.strategy[i]
|
69 |
+
dev = dd.device
|
70 |
+
atype = dd.atype
|
71 |
+
state_init[i*3+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
72 |
+
state_init[i*3+1] = state_raw[f'blocks.{i}.att.time_state'].transpose(1,2).to(dtype=torch.float, device=dev).requires_grad_(False).contiguous()
|
73 |
+
state_init[i*3+2] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
74 |
+
model_state = copy.deepcopy(state_init)
|
75 |
+
|
76 |
+
def run_rnn(ctx):
|
77 |
+
global model_tokens, model_state
|
78 |
+
|
79 |
+
ctx = ctx.replace("\r\n", "\n")
|
80 |
+
|
81 |
+
tokens = tokenizer.encode(ctx)
|
82 |
+
tokens = [int(x) for x in tokens]
|
83 |
+
model_tokens += tokens
|
84 |
+
|
85 |
+
# print(f"### model ###\n{model_tokens}\n[{pipeline.decode(model_tokens)}]") # debug
|
86 |
+
|
87 |
+
while len(tokens) > 0:
|
88 |
+
out, model_state = model.forward(tokens[:CHUNK_LEN], model_state)
|
89 |
+
tokens = tokens[CHUNK_LEN:]
|
90 |
+
|
91 |
+
return out
|
92 |
+
|
93 |
+
if STATE_NAME == None: # use initial prompt if we are not loading a state
|
94 |
+
init_ctx = "User: hi" + "\n\n"
|
95 |
+
init_ctx += "Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it." + "\n\n"
|
96 |
+
# run_rnn(init_ctx)
|
97 |
+
# print(init_ctx, end="")
|
98 |
+
|
99 |
+
while True:
|
100 |
+
msg = prompt("<|im_start|>user:")
|
101 |
+
msg = msg.strip()
|
102 |
+
msg = re.sub(r"\n+", "\n", msg)
|
103 |
+
if len(msg) > 0:
|
104 |
+
occurrence = {}
|
105 |
+
out_tokens = []
|
106 |
+
out_last = 0
|
107 |
+
|
108 |
+
out = run_rnn("<|im_start|>user\n" + msg + "<|im_end|>\n" + "<|im_start|>assistant\n")
|
109 |
+
print("\nAssistant:", end="")
|
110 |
+
|
111 |
+
eos_token_id = tokenizer.eos_token_id
|
112 |
+
pad_token_id = tokenizer.pad_token_id
|
113 |
+
|
114 |
+
for i in range(99999):
|
115 |
+
for n in occurrence:
|
116 |
+
out[n] -= GEN_alpha_presence + occurrence[n] * GEN_alpha_frequency # repetition penalty
|
117 |
+
out[0] -= 1e10 # disable END_OF_TEXT
|
118 |
+
|
119 |
+
token = pipeline.sample_logits(out, temperature=GEN_TEMP, top_p=GEN_TOP_P)
|
120 |
+
|
121 |
+
out, model_state = model.forward([token], model_state)
|
122 |
+
model_tokens += [token]
|
123 |
+
|
124 |
+
out_tokens += [token]
|
125 |
+
|
126 |
+
for xxx in occurrence:
|
127 |
+
occurrence[xxx] *= GEN_penalty_decay
|
128 |
+
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
129 |
+
|
130 |
+
tmp = tokenizer.decode(out_tokens[out_last:])
|
131 |
+
if ("\ufffd" not in tmp) and (not tmp.endswith("\n")):
|
132 |
+
print(tmp, end="", flush=True)
|
133 |
+
out_last = i + 1
|
134 |
+
|
135 |
+
# 使用 token_id 判断是否为 eos_token
|
136 |
+
if token == eos_token_id:
|
137 |
+
print(tmp, end="\n\n", flush=True)
|
138 |
+
break
|
139 |
+
else:
|
140 |
+
print("!!! Error: please say something !!!")
|
MiniMind2_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|im_start|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
MiniMind2_tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
MiniMind2_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|im_start|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "<|im_end|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<|im_start|>",
|
33 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{{ '<|im_start|>system\\n' + system_message + '<|im_end|>\\n' }}{% else %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\\n' + content + '<|im_end|>\\n<|im_start|>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\\n' }}{% endif %}{% endfor %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "<|im_end|>",
|
36 |
+
"extra_special_tokens": {},
|
37 |
+
"legacy": true,
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"spaces_between_special_tokens": false,
|
42 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
43 |
+
"unk_token": "<|endoftext|>"
|
44 |
+
}
|