zhiyuan8 commited on
Commit
24cc2d5
·
verified ·
1 Parent(s): 856f9fc

Upload configuration_rwkv_hybrid.py

Browse files
Files changed (1) hide show
  1. configuration_rwkv_hybrid.py +254 -0
configuration_rwkv_hybrid.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 RWKV team. All rights reserved.
3
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """RwkvHybrid model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.modeling_rope_utils import rope_config_validation
20
+ from transformers.utils import logging
21
+ from typing import Optional, Union, List
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class RwkvHybridConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`RwkvHybridModel`]. It is used to instantiate a
30
+ RwkvHybrid model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of
32
+ RwkvHybrid-7B-beta.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 151936):
40
+ Vocabulary size of the RwkvHybrid model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`RwkvHybridModel`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 22016):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*, defaults to 32):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
60
+ The maximum sequence length that this model might ever be used with.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
69
+ Whether the model's input and output word embeddings should be tied.
70
+ rope_theta (`float`, *optional*, defaults to 10000.0):
71
+ The base period of the RoPE embeddings.
72
+ rope_scaling (`Dict`, *optional*):
73
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
74
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
75
+ accordingly.
76
+ Expected contents:
77
+ `rope_type` (`str`):
78
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
79
+ 'llama3'], with 'default' being the original RoPE implementation.
80
+ `factor` (`float`, *optional*):
81
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
82
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
83
+ original maximum pre-trained length.
84
+ `original_max_position_embeddings` (`int`, *optional*):
85
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
86
+ pretraining.
87
+ `attention_factor` (`float`, *optional*):
88
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
89
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
90
+ `factor` field to infer the suggested value.
91
+ `beta_fast` (`float`, *optional*):
92
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
93
+ ramp function. If unspecified, it defaults to 32.
94
+ `beta_slow` (`float`, *optional*):
95
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
96
+ ramp function. If unspecified, it defaults to 1.
97
+ `short_factor` (`List[float]`, *optional*):
98
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
99
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
100
+ size divided by the number of attention heads divided by 2
101
+ `long_factor` (`List[float]`, *optional*):
102
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
103
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
104
+ size divided by the number of attention heads divided by 2
105
+ `low_freq_factor` (`float`, *optional*):
106
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
107
+ `high_freq_factor` (`float`, *optional*):
108
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
109
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
110
+ Whether to use sliding window attention.
111
+ sliding_window (`int`, *optional*, defaults to 4096):
112
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
113
+ max_window_layers (`int`, *optional*, defaults to 28):
114
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
115
+ attention_dropout (`float`, *optional*, defaults to 0.0):
116
+ The dropout ratio for the attention probabilities.
117
+ head_size (`int`, *optional*, defaults to 64):
118
+ Dimensionality of each RWKV attention head. Defines the hidden dimension size for RWKV attention mechanisms.
119
+ head_size_divisor (`int`, *optional*, defaults to 8):
120
+ Constraint for head_size initialization, typically set to the square root of head_size. Ensures divisibility
121
+ between hidden_size and head_size.
122
+ wkv_version (`int`, *optional*, defaults to 7):
123
+ Version of RWKV attention implementation. Currently supports:
124
+ - 6: Original implementation requiring `wkv_has_gate=True` and `wkv_use_vfirst=False`
125
+ - 7: Improved version requiring `wkv_use_vfirst=True`
126
+ wkv_has_gate (`bool`, *optional*, defaults to False):
127
+ Whether to include gating mechanism in RWKV attention. Required for version 6.
128
+ wkv_has_group_norm (`bool`, *optional*, defaults to True):
129
+ Whether to apply group normalization in RWKV attention layers.
130
+ wkv_use_vfirst (`bool`, *optional*, defaults to True):
131
+ Whether to prioritize value projection in RWKV attention computation. Required for version 7.
132
+ wkv_layers (`Union[str, List[int]]`, *optional*, defaults to None):
133
+ Specifies which layers use RWKV attention:
134
+ - `"full"` or `None`: All layers use RWKV
135
+ - List of integers: Only specified layers (e.g., `[0,1,2]`) use RWKV attention
136
+
137
+ ```python
138
+ >>> from transformers import RwkvHybridModel, RwkvHybridConfig
139
+
140
+ >>> # Initializing a RwkvHybrid style configuration
141
+ >>> configuration = RwkvHybridConfig()
142
+
143
+ >>> # Initializing a model from the RwkvHybrid-7B style configuration
144
+ >>> model = RwkvHybridModel(configuration)
145
+
146
+ >>> # Accessing the model configuration
147
+ >>> configuration = model.config
148
+ ```"""
149
+
150
+ model_type = "rwkv_hybrid"
151
+ keys_to_ignore_at_inference = ["past_key_values"]
152
+
153
+ # Default tensor parallel plan for base model `RwkvHybrid`
154
+ base_model_tp_plan = {
155
+ "layers.*.self_attn.q_proj": "colwise",
156
+ "layers.*.self_attn.k_proj": "colwise",
157
+ "layers.*.self_attn.v_proj": "colwise",
158
+ "layers.*.self_attn.o_proj": "rowwise",
159
+ "layers.*.mlp.gate_proj": "colwise",
160
+ "layers.*.mlp.up_proj": "colwise",
161
+ "layers.*.mlp.down_proj": "rowwise",
162
+ }
163
+
164
+ def __init__(
165
+ self,
166
+ vocab_size: int = 151936,
167
+ hidden_size: int = 4096,
168
+ intermediate_size: int = 22016,
169
+ num_hidden_layers: int = 32,
170
+ num_attention_heads: int = 32,
171
+ num_key_value_heads: int = 32,
172
+ head_size: int = 64,
173
+ head_size_divisor: int = 8,
174
+ hidden_act: str = "silu",
175
+ max_position_embeddings: int = 32768,
176
+ initializer_range: float = 0.02,
177
+ rms_norm_eps: float = 1e-6,
178
+ use_cache: bool = True,
179
+ tie_word_embeddings: bool = False,
180
+ rope_theta: float = 10000.0,
181
+ rope_scaling: Optional[dict] = None,
182
+ use_sliding_window: bool = False,
183
+ sliding_window: int = 4096,
184
+ max_window_layers: int = 28,
185
+ attention_dropout: float = 0.0,
186
+ wkv_version: int = 7,
187
+ wkv_has_gate: bool = False,
188
+ wkv_has_group_norm: bool = True,
189
+ wkv_use_vfirst: bool = True,
190
+ wkv_layers: Optional[Union[str, List[int]]] = None,
191
+ **kwargs,
192
+ ):
193
+ self.vocab_size = vocab_size
194
+ self.max_position_embeddings = max_position_embeddings
195
+ self.hidden_size = hidden_size
196
+ self.intermediate_size = intermediate_size
197
+ self.num_hidden_layers = num_hidden_layers
198
+ self.num_wkv_heads = hidden_size // head_size
199
+ assert hidden_size % head_size == 0, "hidden_size must be divisible by head_size"
200
+ self.num_attention_heads = num_attention_heads
201
+ self.use_sliding_window = use_sliding_window
202
+ self.sliding_window = sliding_window if use_sliding_window else None
203
+ self.max_window_layers = max_window_layers
204
+ self.head_size = head_size
205
+ self.head_size_divisor = head_size_divisor
206
+ self.wkv_version = wkv_version
207
+
208
+ self.wkv_has_gate = wkv_has_gate
209
+ self.wkv_has_group_norm = wkv_has_group_norm
210
+ self.wkv_use_vfirst = wkv_use_vfirst
211
+
212
+ if self.wkv_version == 7:
213
+ assert self.wkv_use_vfirst, "wkv_use_vfirst must be True for wkv_version 7"
214
+ elif self.wkv_version == 6:
215
+ assert self.wkv_has_gate, "wkv_has_gate must be True for wkv_version 6"
216
+ assert not self.wkv_use_vfirst, "wkv_use_vfirst must be False for wkv_version 6"
217
+ else:
218
+ raise NotImplementedError(f"Unsupported wkv_version: {self.wkv_version}, \
219
+ wkv_version must be 6 or 7")
220
+
221
+ if wkv_layers == "full" or wkv_layers is None:
222
+ self.wkv_layers = list(range(num_hidden_layers))
223
+ elif isinstance(wkv_layers, list):
224
+ if all(isinstance(layer, int) for layer in wkv_layers):
225
+ self.wkv_layers = wkv_layers
226
+ else:
227
+ raise ValueError(
228
+ "All elements in wkv_layers must be integers.")
229
+ else:
230
+ raise TypeError(
231
+ "wkv_layers must be either 'full', None, or a list of integers.")
232
+
233
+ # for backward compatibility
234
+ if num_key_value_heads is None:
235
+ num_key_value_heads = num_attention_heads
236
+
237
+ self.num_key_value_heads = num_key_value_heads
238
+ self.hidden_act = hidden_act
239
+ self.initializer_range = initializer_range
240
+ self.rms_norm_eps = rms_norm_eps
241
+ self.use_cache = use_cache
242
+ self.rope_theta = rope_theta
243
+ self.rope_scaling = rope_scaling
244
+ self.attention_dropout = attention_dropout
245
+ # Validate the correctness of rotary position embeddings parameters
246
+ # BC: if there is a 'type' field, move it to 'rope_type'.
247
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
248
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
249
+ rope_config_validation(self)
250
+
251
+ super().__init__(
252
+ tie_word_embeddings=tie_word_embeddings,
253
+ **kwargs,
254
+ )