| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from typing import Any, Dict, Optional, Union | 
					
					
						
						| 
							 | 
						from transformers.cache_utils import DynamicCache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class TimeMixState: | 
					
					
						
						| 
							 | 
						    def __init__(self, shift_state: torch.Tensor, wkv_state: torch.Tensor): | 
					
					
						
						| 
							 | 
						        self.shift_state = shift_state | 
					
					
						
						| 
							 | 
						        self.wkv_state = wkv_state | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ChannelMixState: | 
					
					
						
						| 
							 | 
						    def __init__(self, shift_state: torch.Tensor): | 
					
					
						
						| 
							 | 
						        self.shift_state = shift_state | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class BlockState: | 
					
					
						
						| 
							 | 
						    def __init__(self, time_mix_state: TimeMixState, | 
					
					
						
						| 
							 | 
						                 channel_mix_state: ChannelMixState): | 
					
					
						
						| 
							 | 
						        self.time_mix_state = time_mix_state | 
					
					
						
						| 
							 | 
						        self.channel_mix_state = channel_mix_state | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class BlockStateList: | 
					
					
						
						| 
							 | 
						    def __init__(self, shift_states, wkv_states): | 
					
					
						
						| 
							 | 
						        self.wkv_states = wkv_states | 
					
					
						
						| 
							 | 
						        self.shift_states = shift_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def create(N, B, C, H, device, dtype): | 
					
					
						
						| 
							 | 
						        result = BlockStateList.empty(N, B, C, H, device, dtype) | 
					
					
						
						| 
							 | 
						        result.wkv_states[:] = 0 | 
					
					
						
						| 
							 | 
						        result.wkv_states[:] = 0 | 
					
					
						
						| 
							 | 
						        result.shift_states[:] = 0 | 
					
					
						
						| 
							 | 
						        return result | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def empty(N, B, C, H, device, dtype): | 
					
					
						
						| 
							 | 
						        wkv_states = torch.empty((N, B, H, C//H, C//H), | 
					
					
						
						| 
							 | 
						                                 device=device, | 
					
					
						
						| 
							 | 
						                                 dtype=torch.bfloat16) | 
					
					
						
						| 
							 | 
						        shift_states = torch.empty((N, 2, B, C), device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						        return BlockStateList(shift_states, wkv_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __getitem__(self, layer: int): | 
					
					
						
						| 
							 | 
						        return BlockState( | 
					
					
						
						| 
							 | 
						            TimeMixState(self.shift_states[layer, 0], self.wkv_states[layer]), | 
					
					
						
						| 
							 | 
						            ChannelMixState(self.shift_states[layer, 1])) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __setitem__(self, layer: int, state: BlockState): | 
					
					
						
						| 
							 | 
						        self.shift_states[layer, 0] = state.time_mix_state.shift_state | 
					
					
						
						| 
							 | 
						        self.wkv_states[layer] = state.time_mix_state.wkv_state | 
					
					
						
						| 
							 | 
						        self.shift_states[layer, 1] = state.channel_mix_state.shift_state | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class HybridCache(DynamicCache): | 
					
					
						
						| 
							 | 
						    def __init__(self) -> None: | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.rwkv_layers = set() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __repr__(self) -> str: | 
					
					
						
						| 
							 | 
						        rwkv_layers = f"HybridCache(rwkv_layers={self.rwkv_layers})" | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_cache_count = sum(len(cache) for cache in self.key_cache) | 
					
					
						
						| 
							 | 
						        value_cache_count = sum(len(cache) for cache in self.value_cache) | 
					
					
						
						| 
							 | 
						        count_info = rwkv_layers + \ | 
					
					
						
						| 
							 | 
						            f", key_cache_count={key_cache_count}, value_cache_count={value_cache_count}" | 
					
					
						
						| 
							 | 
						        memories = 0 | 
					
					
						
						| 
							 | 
						        seq_length = self.get_seq_length() | 
					
					
						
						| 
							 | 
						        for cache in self.value_cache: | 
					
					
						
						| 
							 | 
						            for data in cache: | 
					
					
						
						| 
							 | 
						                if not isinstance(data, torch.Tensor): | 
					
					
						
						| 
							 | 
						                    memories += data.time_mix_state.wkv_state.numel() | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    memories += data.numel() | 
					
					
						
						| 
							 | 
						        count_info += f", memories={memories / 1024/1024}MB, seq_length={seq_length}" | 
					
					
						
						| 
							 | 
						        return count_info | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def update(self, | 
					
					
						
						| 
							 | 
						               key_states: Union[int, torch.Tensor], | 
					
					
						
						| 
							 | 
						               value_states: Union[torch.Tensor, BlockState], | 
					
					
						
						| 
							 | 
						               layer_idx: int, | 
					
					
						
						| 
							 | 
						               cache_kwargs: Optional[Dict[str, Any]] = None): | 
					
					
						
						| 
							 | 
						        if isinstance(key_states, int) and not isinstance(value_states, torch.Tensor): | 
					
					
						
						| 
							 | 
						            self.rwkv_layers.add(layer_idx) | 
					
					
						
						| 
							 | 
						            if layer_idx >= len(self.key_cache): | 
					
					
						
						| 
							 | 
						                self.key_cache.append([]) | 
					
					
						
						| 
							 | 
						                self.value_cache.append([]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if len(self.key_cache[layer_idx]) == 0: | 
					
					
						
						| 
							 | 
						                self.key_cache[layer_idx].append(key_states) | 
					
					
						
						| 
							 | 
						                self.value_cache[layer_idx].append(value_states) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.key_cache[layer_idx][0] = self.key_cache[layer_idx][0]+key_states | 
					
					
						
						| 
							 | 
						                self.value_cache[layer_idx][0] = value_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            return key_states, value_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return super().update(key_states, value_states, layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_seq_length(self, layer_idx: Optional[int] = 0): | 
					
					
						
						| 
							 | 
						        if layer_idx in self.rwkv_layers: | 
					
					
						
						| 
							 | 
						            return self.key_cache[layer_idx][0] | 
					
					
						
						| 
							 | 
						        return super().get_seq_length(layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_max_length(self): | 
					
					
						
						| 
							 | 
						        return super().get_max_length() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def reorder_cache(self, beam_idx): | 
					
					
						
						| 
							 | 
						        return super().reorder_cache(beam_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __getitem__(self, item): | 
					
					
						
						| 
							 | 
						        if item in self.rwkv_layers: | 
					
					
						
						| 
							 | 
						            return self.value_cache[item] | 
					
					
						
						| 
							 | 
						        return super().__getitem__(item) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def offload_to_cpu(self): | 
					
					
						
						| 
							 | 
						        for cache in self.value_cache: | 
					
					
						
						| 
							 | 
						            for data in cache: | 
					
					
						
						| 
							 | 
						                if isinstance(data, torch.Tensor): | 
					
					
						
						| 
							 | 
						                    data.cpu() | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    data.time_mix_state.wkv_state.cpu() | 
					
					
						
						| 
							 | 
						                    data.time_mix_state.shift_state.cpu() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def offload_to_cuda(self, device: str): | 
					
					
						
						| 
							 | 
						        for cache in self.value_cache: | 
					
					
						
						| 
							 | 
						            for data in cache: | 
					
					
						
						| 
							 | 
						                if isinstance(data, torch.Tensor): | 
					
					
						
						| 
							 | 
						                    data.cuda(device) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    data.time_mix_state.wkv_state.cuda(device) | 
					
					
						
						| 
							 | 
						                    data.time_mix_state.shift_state.cuda(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def offload_to_device(self, device_type: str, device_id: int = 0): | 
					
					
						
						| 
							 | 
						        for cache in self.value_cache: | 
					
					
						
						| 
							 | 
						            for data in cache: | 
					
					
						
						| 
							 | 
						                if isinstance(data, torch.Tensor): | 
					
					
						
						| 
							 | 
						                    method = getattr(data, device_type) | 
					
					
						
						| 
							 | 
						                    if device_type == 'cpu': | 
					
					
						
						| 
							 | 
						                        method() | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        method(device_id) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    wkv_state_method = getattr( | 
					
					
						
						| 
							 | 
						                        data.time_mix_state.wkv_state, device_type) | 
					
					
						
						| 
							 | 
						                    shift_state_method = getattr( | 
					
					
						
						| 
							 | 
						                        data.time_mix_state.shift_state, device_type) | 
					
					
						
						| 
							 | 
						                    if device_type == 'cpu': | 
					
					
						
						| 
							 | 
						                        wkv_state_method() | 
					
					
						
						| 
							 | 
						                        shift_state_method() | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        wkv_state_method(device_id) | 
					
					
						
						| 
							 | 
						                        shift_state_method(device_id) | 
					
					
						
						| 
							 | 
						
 |