File size: 19,553 Bytes
c1a12af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import torch
from einops import rearrange

from .hybrid_cache import TimeMixState, BlockState
import math
import torch.nn as nn
from torch.nn import functional as F
from .configuration_rwkv_hybrid import RwkvHybridConfig

try:
    import triton
    from rwkvfla.ops.rwkv7 import (
        fused_recurrent_rwkv7,
        chunk_rwkv7,
        native_recurrent_rwkv7,
    )  # pylint: disable=C0411
    from rwkvfla.ops.rwkv6 import (
        fused_recurrent_rwkv6,
        chunk_rwkv6,
        native_recurrent_rwkv6,
    )
except ImportError:
    from rwkvfla.ops.rwkv7 import native_recurrent_rwkv7  # pylint: disable=C0411
    from rwkvfla.ops.rwkv6 import native_recurrent_rwkv6

    fused_recurrent_rwkv7 = native_recurrent_rwkv7
    chunk_rwkv7 = native_recurrent_rwkv7
    chunk_rwkv6 = native_recurrent_rwkv6
    fused_recurrent_rwkv6 = native_recurrent_rwkv6


class Rwkv_Tmix_x070(nn.Module):
    def __init__(self, args: RwkvHybridConfig, layer_id, update_v_first, get_v_first):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.hidden_size = args.hidden_size

        self.update_v_first = update_v_first
        self.get_v_first = get_v_first

        self.head_size = args.head_size
        self.n_head = args.num_wkv_heads
        assert args.hidden_size % self.n_head == 0
        H = self.n_head
        N = self.head_size

        self.x_r = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.x_w = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.x_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.x_v = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.x_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.x_g = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))

        D_DECAY_LORA = 64
        D_AAA_LORA = 64
        D_MV_LORA = 32
        D_GATE_LORA = 128

        self.w1 = nn.Parameter(torch.Tensor(args.hidden_size, D_DECAY_LORA))
        self.w2 = nn.Parameter(torch.Tensor(D_DECAY_LORA, args.hidden_size))
        self.w0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))

        self.a1 = nn.Parameter(torch.Tensor(args.hidden_size, D_AAA_LORA))
        self.a2 = nn.Parameter(torch.Tensor(D_AAA_LORA, args.hidden_size))
        self.a0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))

        self.v1 = nn.Parameter(torch.Tensor(args.hidden_size, D_MV_LORA))
        self.v2 = nn.Parameter(torch.Tensor(D_MV_LORA, args.hidden_size))
        self.v0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))

        if self.args.wkv_has_gate:
            self.g1 = nn.Parameter(torch.Tensor(args.hidden_size, D_GATE_LORA))
            self.g2 = nn.Parameter(torch.Tensor(D_GATE_LORA, args.hidden_size))

        self.k_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.k_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
        self.r_k = nn.Parameter(torch.Tensor(H, N))

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        self.receptance = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
        self.key = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
        self.value = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
        self.output = nn.Linear(args.hidden_size, args.hidden_size, bias=False)

        if self.args.wkv_has_group_norm:
            self.ln_x = nn.GroupNorm(
                H, args.hidden_size, eps=(1e-5) * (args.head_size_divisor**2)
            )

    def post_init(self):
        with torch.no_grad():
            ratio_0_to_1 = self.layer_id / (self.args.num_hidden_layers - 1)  # 0 to 1
            ratio_1_to_almost0 = 1.0 - (
                self.layer_id / self.args.num_hidden_layers
            )  # 1 to ~0

            ddd = torch.ones(1, 1, self.args.hidden_size)
            for i in range(self.args.hidden_size):
                ddd[0, 0, i] = i / self.args.hidden_size

            nn.init.constant_(self.x_r, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
            nn.init.constant_(self.x_w, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
            nn.init.constant_(
                self.x_k,
                1.0 - (torch.pow(ddd, 0.9 * ratio_1_to_almost0) + 0.4 * ratio_0_to_1),
            )
            nn.init.constant_(
                self.x_v,
                1.0 - (torch.pow(ddd, 0.4 * ratio_1_to_almost0) + 0.6 * ratio_0_to_1),
            )
            nn.init.constant_(self.x_a, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
            nn.init.constant_(self.x_g, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))

            def ortho_init(x, scale):
                shape = x.shape
                original_dtype = x.dtype
                x_fp32 = x.float()
                if len(shape) == 2:
                    gain = math.sqrt(shape[0] / shape[1]) if shape[0] > shape[1] else 1
                    nn.init.orthogonal_(x_fp32, gain=gain * scale)
                elif len(shape) == 3:
                    gain = math.sqrt(shape[1] / shape[2]) if shape[1] > shape[2] else 1
                    for i in range(shape[0]):
                        nn.init.orthogonal_(x_fp32[i], gain=gain * scale)
                else:
                    raise ValueError("ortho_init only supports 2D or 3D tensors")
                x.data.copy_(x_fp32.to(original_dtype))
                return x

            D_DECAY_LORA = 64
            nn.init.zeros_(self.w1)
            self.w2 = nn.Parameter(
                ortho_init(torch.zeros(D_DECAY_LORA, self.args.hidden_size), 0.1)
            )

            decay_speed = torch.ones(self.args.hidden_size)
            for n in range(self.args.hidden_size):
                decay_speed[n] = -7 + 5 * (n / (self.args.hidden_size - 1)) ** (
                    0.85 + 1.0 * ratio_0_to_1**0.5
                )
            nn.init.constant_(
                self.w0, decay_speed.reshape(1, 1, self.args.hidden_size) + 0.5
            )

            D_AAA_LORA = 64
            nn.init.zeros_(self.a1)
            self.a2 = nn.Parameter(
                ortho_init(torch.zeros(D_AAA_LORA, self.args.hidden_size), 0.1)
            )
            nn.init.zeros_(self.a0)

            D_MV_LORA = 32
            nn.init.zeros_(self.v1)
            self.v2 = nn.Parameter(
                ortho_init(torch.zeros(D_MV_LORA, self.args.hidden_size), 0.1)
            )
            nn.init.constant_(self.v0, 1.0)

            D_GATE_LORA = 128
            if self.args.wkv_has_gate:
                nn.init.zeros_(self.g1)
                self.g2 = nn.Parameter(
                    ortho_init(torch.zeros(D_GATE_LORA, self.args.hidden_size), 0.1)
                )

            nn.init.constant_(self.k_k, 0.85)
            nn.init.constant_(self.k_a, 1.0)
            nn.init.zeros_(self.r_k)

            nn.init.zeros_(self.receptance.weight)
            nn.init.zeros_(self.key.weight)
            nn.init.zeros_(self.value.weight)
            nn.init.zeros_(self.output.weight)

            if self.args.wkv_has_group_norm:
                nn.init.ones_(self.ln_x.weight)
                nn.init.zeros_(self.ln_x.bias)

    def apply_wkv7_state(self, r, k, v, w, a, b, s):
        r = rearrange(r, "b l (h d) -> b h l d", h=self.n_head)
        k = rearrange(k, "b l (h d) -> b h l d", h=self.n_head)
        v = rearrange(v, "b l (h d) -> b h l d", h=self.n_head)
        w = rearrange(w, "b l (h d) -> b h l d", h=self.n_head)
        a = rearrange(a, "b l (h d) -> b h l d", h=self.n_head)
        b = rearrange(b, "b l (h d) -> b h l d", h=self.n_head)

        if r.device.type == "cpu":
            o, state = native_recurrent_rwkv7(
                r,
                k,
                v,
                w,
                a,
                b,
                scale=1.0,
                initial_state=s.transpose(-1, -2),
                output_final_state=True,
                use_log_w=False,
                head_first=True,
            )
            state = state.transpose(-1, -2)
        elif self.training:
            o, state = chunk_rwkv7(
                r,
                k,
                v,
                w,
                a,
                b,
                scale=1.0,
                initial_state=s,
                output_final_state=True,
                use_log_w=False,
                head_first=True,
            )
        else:
            o, state = fused_recurrent_rwkv7(
                r,
                k,
                v,
                w,
                a,
                b,
                scale=1.0,
                initial_state=s,
                output_final_state=True,
                use_log_w=False,
                head_first=True,
            )

        x = rearrange(o, "b h l d -> b l (h d)")
        return x, state

    def forward(self, x, last_state: TimeMixState):
        shift_state = last_state.shift_state
        B, T, C = x.size()
        H = self.n_head
        if shift_state is not None:
            xx = torch.concat((shift_state.unsqueeze(1), x[:, :-1]), dim=1) - x
        else:
            xx = self.time_shift(x) - x
        lx = x[:, -1]

        xr = x + xx * self.x_r
        xw = x + xx * self.x_w
        xk = x + xx * self.x_k
        xv = x + xx * self.x_v
        xa = x + xx * self.x_a
        xg = x + xx * self.x_g

        r = self.receptance(xr)
        w = (
            -F.softplus(-(self.w0 + torch.tanh(xw @ self.w1) @ self.w2)) - 0.5
        )  # soft-clamp to (-inf, -0.5)
        k = self.key(xk)
        v = self.value(xv)
        if self.layer_id == 0:
            self.update_v_first(v)
        else:
            # Original implementation
            v = v + (self.get_v_first().to(v.device) - v) * torch.sigmoid(
                self.v0 + (xv @ self.v1) @ self.v2
            )  # add value residual

        a = torch.sigmoid(
            self.a0 + (xa @ self.a1) @ self.a2
        )  # a is "in-context learning rate"
        if self.args.wkv_has_gate:
            g = torch.sigmoid(xg @ self.g1) @ self.g2
        kk = k * self.k_k
        kk = F.normalize(kk.view(B, T, H, -1), dim=-1, p=2.0).view(B, T, C)
        k = k * (1 + (a - 1) * self.k_a)

        wkv_state = last_state.wkv_state
        x, wkv_state = self.apply_wkv7_state(
            r,
            k,
            v,
            w,
            -kk,
            (kk * a),
            s=wkv_state,
        )
        if self.args.wkv_has_group_norm:
            x = self.ln_x(x.view(B * T, C)).view(B, T, C)
        x = x + (
            (r.view(B, T, H, -1) * k.view(B, T, H, -1) * self.r_k).sum(
                dim=-1, keepdim=True
            )
            * v.view(B, T, H, -1)
        ).view(B, T, C)
        x = self.output(x * g) if self.args.wkv_has_gate else self.output(x)
        return x, TimeMixState(lx, wkv_state)


class Rwkv7Attention(nn.Module):
    def __init__(self, args: RwkvHybridConfig, layer_id, update_v_first, get_v_first):
        super().__init__()
        self.args = args
        self.layer_idx = layer_id
        self.time_mixer = Rwkv_Tmix_x070(args, layer_id, update_v_first, get_v_first)

    def forward(self, hidden_states, past_key_value, **kwargs):
        attn_output = hidden_states
        batch_size, token_length, _ = attn_output.size()

        if past_key_value is not None and len(past_key_value) > self.layer_idx:
            last_state = past_key_value[self.layer_idx][0]
        else:
            last_state = self.init_state(
                batch_size, attn_output.device, attn_output.dtype
            )

        attn_output, states = self.time_mixer(attn_output, last_state.time_mix_state)
        last_state.time_mix_state = states

        if past_key_value is not None:
            past_key_value.update(token_length, last_state, self.layer_idx)
        return attn_output, None

    def init_state(self, batch_size, device, dtype) -> BlockState:
        wkv_states = torch.zeros(
            (
                batch_size,
                self.args.num_wkv_heads,
                self.args.head_size,
                self.args.head_size,
            ),
            device=device,
            dtype=torch.float32,
        )
        token_shift = torch.zeros(
            (batch_size, self.args.hidden_size), device=device, dtype=dtype
        )
        return BlockState(TimeMixState(token_shift, wkv_states), None)


class Rwkv_Tmix_x060(nn.Module):
    def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
        super().__init__()
        self.args = args
        self.layer_id = layer_id
        self.hidden_size = args.hidden_size

        self.head_size = args.head_size
        self.n_head = args.num_wkv_heads
        assert args.hidden_size % self.n_head == 0
        H = self.n_head
        N = self.head_size

        with torch.no_grad():
            ratio_0_to_1 = layer_id / (args.n_layer - 1)  # 0 to 1
            ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)  # 1 to ~0
            ddd = torch.ones(1, 1, args.hidden_size)
            for i in range(args.hidden_size):
                ddd[0, 0, i] = i / args.hidden_size

            # fancy time_mix
            self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
            self.time_maa_w = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
            self.time_maa_k = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
            self.time_maa_v = nn.Parameter(
                1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
            )
            self.time_maa_r = nn.Parameter(
                1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0)
            )
            self.time_maa_g = nn.Parameter(
                1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0)
            )

            D_MIX_LORA = 32  # generate TIME_MIX for w,k,v,r,g
            if args.hidden_size == 4096:
                D_MIX_LORA = D_MIX_LORA * 2
            self.time_maa_w1 = nn.Parameter(
                torch.zeros(args.hidden_size, D_MIX_LORA * 5)
            )
            self.time_maa_w2 = nn.Parameter(
                torch.zeros(5, D_MIX_LORA, args.hidden_size).uniform_(-0.01, 0.01)
            )

            # fancy time_decay
            decay_speed = torch.ones(args.head_size)
            for n in range(args.head_size):
                decay_speed[n] = -6 + 5 * (n / (args.head_size - 1)) ** (
                    0.7 + 1.3 * ratio_0_to_1
                )
            self.time_decay = nn.Parameter(decay_speed.reshape(1, 1, args.head_size))

            D_DECAY_LORA = 64
            if args.hidden_size == 4096:
                D_DECAY_LORA = D_DECAY_LORA * 2
            self.time_decay_w1 = nn.Parameter(
                torch.zeros(args.hidden_size, D_DECAY_LORA)
            )
            self.time_decay_w2 = nn.Parameter(
                torch.zeros(D_DECAY_LORA, args.head_size).uniform_(-0.01, 0.01)
            )

            tmp = torch.zeros(args.head_size)
            for n in range(args.head_size):
                zigzag = ((n + 1) % 3 - 1) * 0.1
                tmp[n] = ratio_0_to_1 * (1 - (n / (args.head_size - 1))) + zigzag

            self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
            # self.time_state = nn.Parameter(torch.zeros(self.n_head, self.head_size, self.head_size))

        self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
        self.receptance = nn.Linear(args.hidden_size, args.head_size, bias=False)
        self.key = nn.Linear(args.hidden_size, args.head_size, bias=False)

        self.value = nn.Linear(args.hidden_size, args.head_size, bias=False)
        self.output = nn.Linear(args.head_size, args.hidden_size, bias=False)
        self.gate = nn.Linear(args.hidden_size, args.head_size, bias=False)

        if self.args.wkv_has_group_norm:
            self.ln_x = nn.GroupNorm(
                self.n_head, args.head_size, eps=(1e-5) * (args.head_size_divisor**2)
            )

    def post_init(self):
        pass

    def forward(self, x, last_state: TimeMixState):
        shift_state = last_state.shift_state
        B, T, C = x.size()
        H = self.n_head
        if shift_state is not None:
            xx = torch.concat((shift_state.unsqueeze(1), x[:, :-1]), dim=1) - x
        else:
            xx = self.time_shift(x) - x
        lx = x[:, -1]

        xxx = x + xx * self.time_maa_x
        xxx = torch.tanh(xxx @ self.time_maa_w1).view(B * T, 5, -1).transpose(0, 1)
        xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
        mw, mk, mv, mr, mg = xxx.unbind(dim=0)

        xw = x + xx * (self.time_maa_w + mw)
        xk = x + xx * (self.time_maa_k + mk)
        xv = x + xx * (self.time_maa_v + mv)
        xr = x + xx * (self.time_maa_r + mr)
        xg = x + xx * (self.time_maa_g + mg)

        r = self.receptance(xr)
        k = self.key(xk)
        v = self.value(xv)
        g = F.silu(self.gate(xg))

        ww = torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2
        w = self.time_decay + ww

        wkv_state = last_state.wkv_state
        x, wkv_state = self.apply_wkv6_state(
            B, T, C, H, r, k, v, w, u=self.time_faaaa, s=wkv_state
        )
        if self.args.wkv_has_group_norm:
            x = self.ln_x(x.view(B * T, C)).view(B, T, C)
        x = self.output(x * g)
        return x, TimeMixState(lx, wkv_state)

    def apply_wkv6_state(self, B, T, C, H, r, k, v, w, u, s):
        r = rearrange(r, "b l (h d) -> b h l d", h=H)
        k = rearrange(k, "b l (h d) -> b h l d", h=H)
        v = rearrange(v, "b l (h d) -> b h l d", h=H)
        w = rearrange(w, "b l (h d) -> b h l d", h=H)

        if r.device.type == "cpu":
            wkv6_func = native_recurrent_rwkv6
        elif self.training:
            wkv6_func = chunk_rwkv6
        else:
            wkv6_func = fused_recurrent_rwkv6

        o, state = wkv6_func(
            r,
            k,
            v,
            -torch.exp(w),
            u=u,
            scale=1.0,
            initial_state=s,
            output_final_state=True,
        )
        x = rearrange(o, "b h l d -> b l (h d)")
        return x, state


class Rwkv6Attention(nn.Module):
    def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
        super().__init__()
        self.args = args
        self.layer_idx = layer_id
        self.time_mixer = Rwkv_Tmix_x060(args, layer_id, **kwargs)

    def forward(self, hidden_states, past_key_value, **kwargs):
        attn_output = hidden_states
        B, T, C = attn_output.size()
        if past_key_value is not None:
            if len(past_key_value) <= self.layer_idx:
                last_state = None
            else:
                last_state = past_key_value[self.layer_idx][0]
        if last_state is None:
            wkv_states = torch.zeros(
                (B, self.args.num_wkv_heads, self.args.head_size, self.args.head_size),
                device=attn_output.device,
                dtype=torch.float32,
            )
            token_shift = torch.zeros(
                (B, C), device=attn_output.device, dtype=attn_output.dtype
            )
            time_state = TimeMixState(token_shift, wkv_states)
            channel_state = None
            last_state = BlockState(time_state, channel_state)
        attn_output, states = self.time_mixer(attn_output, last_state.time_mix_state)
        last_state.time_mix_state = states

        if past_key_value is not None:
            past_key_value.update(T, last_state, self.layer_idx)
        return attn_output, None