File size: 13,901 Bytes
c1a12af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# coding=utf-8
# Copyright 2025 RWKV team. All rights reserved.
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RwkvHybrid model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
from typing import Optional, Union, List
logger = logging.get_logger(__name__)
class RwkvHybridConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RwkvHybridModel`]. It is used to instantiate a
RwkvHybrid model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
RwkvHybrid-7B-beta.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the RwkvHybrid model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RwkvHybridModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
head_size (`int`, *optional*, defaults to 64):
Dimensionality of each RWKV attention head. Defines the hidden dimension size for RWKV attention mechanisms.
head_size_divisor (`int`, *optional*, defaults to 8):
Constraint for head_size initialization, typically set to the square root of head_size. Ensures divisibility
between hidden_size and head_size.
wkv_version (`int`, *optional*, defaults to 7):
Version of RWKV attention implementation. Currently supports:
- 6: Original implementation requiring `wkv_has_gate=True` and `wkv_use_vfirst=False`
- 7: Improved version requiring `wkv_use_vfirst=True`
wkv_has_gate (`bool`, *optional*, defaults to False):
Whether to include gating mechanism in RWKV attention. Required for version 6.
wkv_has_group_norm (`bool`, *optional*, defaults to True):
Whether to apply group normalization in RWKV attention layers.
wkv_use_vfirst (`bool`, *optional*, defaults to True):
Whether to prioritize value projection in RWKV attention computation. Required for version 7.
wkv_layers (`Union[str, List[int]]`, *optional*, defaults to None):
Specifies which layers use RWKV attention:
- `"full"` or `None`: All layers use RWKV
- List of integers: Only specified layers (e.g., `[0,1,2]`) use RWKV attention
```python
>>> from transformers import RwkvHybridModel, RwkvHybridConfig
>>> # Initializing a RwkvHybrid style configuration
>>> configuration = RwkvHybridConfig()
>>> # Initializing a model from the RwkvHybrid-7B style configuration
>>> model = RwkvHybridModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "rwkv_hybrid"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `RwkvHybrid`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size: int = 151936,
hidden_size: int = 4096,
intermediate_size: int = 22016,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: int = 32,
head_size: int = 64,
head_size_divisor: int = 8,
hidden_act: str = "silu",
max_position_embeddings: int = 32768,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
tie_word_embeddings: bool = False,
rope_theta: float = 10000.0,
rope_scaling: Optional[dict] = None,
use_sliding_window: bool = False,
sliding_window: int = 4096,
max_window_layers: int = 28,
attention_dropout: float = 0.0,
wkv_version: int = 7,
wkv_has_gate: bool = False,
wkv_has_group_norm: bool = True,
wkv_use_vfirst: bool = True,
wkv_layers: Optional[Union[str, List[int]]] = None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_wkv_heads = hidden_size // head_size
assert hidden_size % head_size == 0, "hidden_size must be divisible by head_size"
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
self.head_size = head_size
self.head_size_divisor = head_size_divisor
self.wkv_version = wkv_version
self.wkv_has_gate = wkv_has_gate
self.wkv_has_group_norm = wkv_has_group_norm
self.wkv_use_vfirst = wkv_use_vfirst
if self.wkv_version == 7:
assert self.wkv_use_vfirst, "wkv_use_vfirst must be True for wkv_version 7"
elif self.wkv_version == 6:
assert self.wkv_has_gate, "wkv_has_gate must be True for wkv_version 6"
assert not self.wkv_use_vfirst, "wkv_use_vfirst must be False for wkv_version 6"
else:
raise NotImplementedError(f"Unsupported wkv_version: {self.wkv_version}, \
wkv_version must be 6 or 7")
if wkv_layers == "full" or wkv_layers == None:
self.wkv_layers = list(range(num_hidden_layers))
elif isinstance(wkv_layers, list):
if all(isinstance(layer, int) for layer in wkv_layers):
self.wkv_layers = wkv_layers
else:
raise ValueError("All elements in wkv_layers must be integers.")
else:
raise TypeError("wkv_layers must be either 'full', None, or a list of integers.")
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|