Upload 2 files
Browse files- model.py +185 -0
- trained.zip +3 -0
model.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.ao.nn.quantized import Sigmoid
|
2 |
+
from transformers import BartModel
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.nn.init as init
|
7 |
+
from peft import get_peft_model, LoraConfig
|
8 |
+
from huggingface_hub import PyTorchModelHubMixin
|
9 |
+
from transformers import BartConfig
|
10 |
+
|
11 |
+
|
12 |
+
class MLP(nn.Module):
|
13 |
+
def __init__(self, layer_sizes=[64, 64, 64, 1], arl=False, dropout=0.0):
|
14 |
+
super().__init__()
|
15 |
+
self.arl = arl
|
16 |
+
self.attention = nn.Sequential(
|
17 |
+
nn.Linear(layer_sizes[0], layer_sizes[0]),
|
18 |
+
nn.ReLU(),
|
19 |
+
nn.Dropout(dropout),
|
20 |
+
nn.Linear(layer_sizes[0], layer_sizes[0])
|
21 |
+
)
|
22 |
+
|
23 |
+
self.layer_sizes = layer_sizes
|
24 |
+
if len(layer_sizes) < 2:
|
25 |
+
raise ValueError()
|
26 |
+
self.layers = nn.ModuleList()
|
27 |
+
self.act = nn.LeakyReLU(negative_slope=0.01, inplace=True)
|
28 |
+
self.dropout = nn.Dropout(dropout)
|
29 |
+
for i in range(len(layer_sizes) - 1):
|
30 |
+
self.layers.append(nn.Linear(layer_sizes[i], layer_sizes[i + 1]))
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
if self.arl:
|
34 |
+
x = x * self.attention(x)
|
35 |
+
for layer in self.layers[:-1]:
|
36 |
+
x = self.dropout(self.act(layer(x)))
|
37 |
+
x = self.layers[-1](x)
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
class BART(nn.Module):
|
42 |
+
def __init__(self, bartconfig, class_num=100):
|
43 |
+
super().__init__()
|
44 |
+
d_model = bartconfig.d_model
|
45 |
+
self.decoder_emb = nn.Embedding(class_num, d_model)
|
46 |
+
self.bart = BartModel(bartconfig)
|
47 |
+
|
48 |
+
def forward(self, x_encoder, x_decoder, attn_mask_encoder=None, attn_mask_decoder=None):
|
49 |
+
emb_encoder = x_encoder
|
50 |
+
emb_decoder = self.decoder_emb(x_decoder)
|
51 |
+
y = self.bart(inputs_embeds=emb_encoder, decoder_inputs_embeds=emb_decoder,
|
52 |
+
attention_mask=attn_mask_encoder, decoder_attention_mask=attn_mask_decoder,
|
53 |
+
output_hidden_states=False)
|
54 |
+
y = y.last_hidden_state
|
55 |
+
return y
|
56 |
+
|
57 |
+
def encode(self, x_encoder, attn_mask_encoder=None):
|
58 |
+
emb_encoder = x_encoder
|
59 |
+
y = self.bart.encoder(inputs_embeds=emb_encoder, attention_mask=attn_mask_encoder, output_hidden_states=False)
|
60 |
+
y = y.last_hidden_state
|
61 |
+
return y
|
62 |
+
|
63 |
+
|
64 |
+
class ML_BART(nn.Module):
|
65 |
+
def __init__(self, bartconfig, class_num=[180, 256], pretrain=False, music_dim=512):
|
66 |
+
super().__init__()
|
67 |
+
d_model = bartconfig.d_model
|
68 |
+
|
69 |
+
self.decoder_emb = nn.ModuleList([
|
70 |
+
nn.Embedding(class_num[0] + 1, d_model // 4),
|
71 |
+
nn.Embedding(class_num[1] + 1, d_model // 4)
|
72 |
+
])
|
73 |
+
self.decoder = MLP([music_dim, d_model // 2])
|
74 |
+
|
75 |
+
self.bart = BartModel(bartconfig)
|
76 |
+
self.pretrain = pretrain
|
77 |
+
|
78 |
+
self.encoder = MLP([music_dim, d_model])
|
79 |
+
self.lora_config = LoraConfig(
|
80 |
+
r=4,
|
81 |
+
lora_alpha=16,
|
82 |
+
lora_dropout=0.1
|
83 |
+
)
|
84 |
+
|
85 |
+
def forward(self, x_encoder, x_decoder, attn_mask_encoder=None, attn_mask_decoder=None):
|
86 |
+
# emb_encoder = x_encoder
|
87 |
+
emb_encoder = self.encoder(x_encoder)
|
88 |
+
|
89 |
+
if self.pretrain:
|
90 |
+
# emb_decoder = x_decoder
|
91 |
+
emb_decoder = self.encoder(x_decoder)
|
92 |
+
else:
|
93 |
+
emb_decoder = torch.concatenate(
|
94 |
+
[self.decoder_emb[0](x_decoder[..., 0]), self.decoder_emb[1](x_decoder[..., 1]),
|
95 |
+
self.decoder(x_encoder)], dim=-1)
|
96 |
+
|
97 |
+
y = self.bart(inputs_embeds=emb_encoder, decoder_inputs_embeds=emb_decoder,
|
98 |
+
attention_mask=attn_mask_encoder, decoder_attention_mask=attn_mask_decoder,
|
99 |
+
output_hidden_states=False)
|
100 |
+
y = y.last_hidden_state
|
101 |
+
return y
|
102 |
+
|
103 |
+
def encode(self, x_encoder, attn_mask_encoder=None):
|
104 |
+
# emb_encoder = x_encoder
|
105 |
+
emb_encoder = self.encoder(x_encoder)
|
106 |
+
|
107 |
+
y = self.bart.encoder(inputs_embeds=emb_encoder, attention_mask=attn_mask_encoder, output_hidden_states=False)
|
108 |
+
y = y.last_hidden_state
|
109 |
+
return y
|
110 |
+
|
111 |
+
def reset_decoder(self):
|
112 |
+
for name, param in self.bart.decoder.named_parameters():
|
113 |
+
if param.dim() >= 2:
|
114 |
+
init.xavier_uniform_(param)
|
115 |
+
elif param.dim() == 1:
|
116 |
+
init.zeros_(param)
|
117 |
+
|
118 |
+
|
119 |
+
class ML_Classifier(nn.Module):
|
120 |
+
def __init__(self, hidden_dim=512, class_num=[180, 256]):
|
121 |
+
super().__init__()
|
122 |
+
self.classifier = nn.ModuleList([
|
123 |
+
MLP([hidden_dim, hidden_dim, class_num[0] + 1]),
|
124 |
+
MLP([hidden_dim, hidden_dim, class_num[1] + 1])
|
125 |
+
])
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
h = self.classifier[0](x)
|
129 |
+
v = self.classifier[1](x)
|
130 |
+
return h, v
|
131 |
+
|
132 |
+
|
133 |
+
class SelfAttention(nn.Module):
|
134 |
+
def __init__(self, input_dim, da, r):
|
135 |
+
super().__init__()
|
136 |
+
self.ws1 = nn.Linear(input_dim, da, bias=False)
|
137 |
+
self.ws2 = nn.Linear(da, r, bias=False)
|
138 |
+
|
139 |
+
def forward(self, h):
|
140 |
+
attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1)
|
141 |
+
attn_mat = attn_mat.permute(0, 2, 1)
|
142 |
+
return attn_mat
|
143 |
+
|
144 |
+
|
145 |
+
class Sequence_Classifier(nn.Module):
|
146 |
+
def __init__(self, class_num=1, hs=512, da=512, r=8):
|
147 |
+
super().__init__()
|
148 |
+
self.attention = SelfAttention(hs, da, r)
|
149 |
+
self.classifier = MLP([hs * r, (hs * r + class_num) // 2, class_num])
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
attn_mat = self.attention(x)
|
153 |
+
m = torch.bmm(attn_mat, x)
|
154 |
+
flatten = m.view(m.size()[0], -1)
|
155 |
+
res = self.classifier(flatten)
|
156 |
+
return res
|
157 |
+
|
158 |
+
|
159 |
+
class Token_Predictor(nn.Module):
|
160 |
+
def __init__(self, hidden_dim=512, class_num=1):
|
161 |
+
super().__init__()
|
162 |
+
self.classifier = MLP([hidden_dim, (hidden_dim + class_num) // 2, class_num])
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
x = self.classifier(x)
|
166 |
+
return x
|
167 |
+
|
168 |
+
class Skip_BART(nn.Module,
|
169 |
+
PyTorchModelHubMixin
|
170 |
+
):
|
171 |
+
def __init__(self, class_num=[180, 256], max_position_embeddings=1024, hidden_size=1024, layers=8, heads=8, ffn_dims=2048, pretrain=False):
|
172 |
+
super().__init__()
|
173 |
+
self.config = BartConfig(max_position_embeddings=max_position_embeddings,
|
174 |
+
d_model=hidden_size,
|
175 |
+
encoder_layers=layers,
|
176 |
+
encoder_ffn_dim=ffn_dims,
|
177 |
+
encoder_attention_heads=heads,
|
178 |
+
decoder_layers=layers,
|
179 |
+
decoder_ffn_dim=ffn_dims,
|
180 |
+
decoder_attention_heads=heads
|
181 |
+
)
|
182 |
+
self.model = ML_BART(self.config, class_num = class_num, pretrain = pretrain)
|
183 |
+
|
184 |
+
def forward(self, x_encoder, x_decoder, attn_mask_encoder=None, attn_mask_decoder=None):
|
185 |
+
return self.model(x_encoder, x_decoder, attn_mask_encoder, attn_mask_decoder)
|
trained.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:737603ca3921a070ea8b70e623f7b789219656e0a02ec65721a7698a0ceb9d3c
|
3 |
+
size 854009394
|