RS2002 commited on
Commit
0318886
·
verified ·
1 Parent(s): 77a8fb4

Push model using huggingface_hub.

Browse files
Files changed (3) hide show
  1. README.md +9 -83
  2. config.json +12 -0
  3. model.safetensors +3 -0
README.md CHANGED
@@ -1,83 +1,9 @@
1
- # Skip-BART
2
-
3
- The description is generated by Grok3.
4
-
5
- ## Model Details
6
-
7
- - **Model Name**: Skip-BART
8
-
9
- - **Model Type**: Transformer-based model (BART architecture) for automatic stage lighting control
10
-
11
- - **Version**: 1.0
12
-
13
- - **Release Date**: August 2025
14
-
15
- - **Developers**: Zijian Zhao, Dian Jin
16
-
17
- - **Organization**: HKUST, PolyU
18
-
19
- - **License**: Apache License 2.0
20
-
21
- - **Paper**: [Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?](https://arxiv.org/abs/2506.01482)
22
-
23
- - **Citation:**
24
-
25
- ```
26
- @article{zhao2025automatic,
27
- title={Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?},
28
- author={Zhao, Zijian and Jin, Dian and Zhou, Zijing and Zhang, Xiaoyu},
29
- journal={arXiv preprint arXiv:2506.01482},
30
- year={2025}
31
- }
32
- ```
33
-
34
- - **Contact**: [email protected]
35
-
36
- - **Repository**: https://github.com/RS2002/Skip-BART
37
-
38
- ## Model Description
39
-
40
- Skip-BART is a transformer-based model built on the Bidirectional and Auto-Regressive Transformers (BART) architecture, designed for automatic stage lighting control. It generates lighting sequences synchronized with music input, treating stage lighting as a generative task. The model processes music data in an octuple format and outputs lighting control parameters, leveraging a skip-connection-enhanced BART structure for improved performance.
41
-
42
- - **Architecture**: BART with skip connections
43
- - **Input Format**: Encoder input (batch_size, length, 512), decoder input (batch_size, length, 2), attention masks (batch_size, length)
44
- - **Output Format**: Hidden states of dimension [batch_size, length, 1024]
45
- - **Hidden Size**: 1024
46
- - **Training Objective**: Pre-training on music data, followed by fine-tuning for lighting sequence generation
47
- - **Tasks Supported**: Stage lighting sequence generation
48
-
49
- ## Training Data
50
-
51
- The model was trained on the **RPMC-L2** dataset:
52
-
53
- - **Dataset Source**: [RPMC-L2](https://zenodo.org/records/14854217?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjM5MDcwY2E5LTY0MzUtNGZhZC04NzA4LTczMjNhNTZiOGZmYSIsImRhdGEiOnt9LCJyYW5kb20iOiI1YWRkZmNiMmYyOGNiYzI4ZWUxY2QwNTAyY2YxNTY4ZiJ9.0Jr6GYfyyn02F96eVpkjOtcE-MM1wt-_ctOshdNGMUyUKI15-9Rfp9VF30_hYOTqv_9lLj-7Wj0qGyR3p9cA5w)
54
- - **Description**: Contains music and corresponding stage lighting data in a format suitable for training Skip-BART.
55
- - **Details**: Refer to the [paper](https://arxiv.org/abs/2506.01482) for dataset specifics.
56
-
57
- ## Usage
58
-
59
- ### Installation
60
-
61
- ```shell
62
- git clone https://huggingface.co/RS2002/Skip-BART
63
- ```
64
-
65
- ### Example Code
66
-
67
- ```python
68
- import torch
69
- from model import Skip_BART
70
-
71
- # Load the model
72
- model = Skip_BART.from_pretrained("RS2002/Skip-BART")
73
-
74
- # Example input
75
- x_encoder = torch.rand((2, 1024, 512))
76
- x_decoder = torch.randint(0, 10, (2, 1024, 2))
77
- encoder_attention_mask = torch.zeros((2, 1024))
78
- decoder_attention_mask = torch.zeros((2, 1024))
79
-
80
- # Forward pass
81
- output = model(x_encoder, x_decoder, encoder_attention_mask, decoder_attention_mask)
82
- print(output.last_hidden_state.size()) # Output: [2, 1024, 1024]
83
- ```
 
1
+ ---
2
+ tags:
3
+ - model_hub_mixin
4
+ - pytorch_model_hub_mixin
5
+ ---
6
+
7
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
+ - Library: [More Information Needed]
9
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "class_num": [
3
+ 180,
4
+ 256
5
+ ],
6
+ "ffn_dims": 2048,
7
+ "heads": 8,
8
+ "hidden_size": 1024,
9
+ "layers": 8,
10
+ "max_position_embeddings": 1024,
11
+ "pretrain": false
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bad4aa09fb0d034f7e10494b48a3260be4b727e110e9ebc79bfa5c2397149cf2
3
+ size 894159240