RE-N-Y commited on
Commit
e27b050
·
verified ·
1 Parent(s): e36abfb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -164
README.md CHANGED
@@ -1,201 +1,111 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
75
 
76
- ## Training Details
 
 
 
 
 
 
 
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - en
6
+ metrics:
7
+ - accuracy
8
  ---
9
 
10
+ # Model Card for Logic2Vision
 
 
11
 
12
+ Logic2Vision is a [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf) model finetuned on [VisReas dataset](https://arxiv.org/abs/2403.10534) for complex visual reasoning tasks.
13
 
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
 
19
+ Logic2Vision is a [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf) model finetuned on [VisReas dataset](https://arxiv.org/abs/2403.10534) for complex visual reasoning tasks.
20
+ The model has been finetuned using LoRA to generate python pseudocode outputs to solve a complex visual reasoning tasks.
 
 
 
 
 
 
 
 
 
21
 
22
+ - **Developed by:** Sangwu Lee and Syeda Akter
23
+ - **Model type:** Multimodal (Text + Image)
24
+ - **Language(s) (NLP):** English
25
+ - **License:** MIT
26
+ - **Finetuned from model:** [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf)
27
 
28
+ ### Model Sources
29
 
30
+ - **Repository:** TBD
31
+ - **Paper:** [VisReas dataset](https://arxiv.org/abs/2403.10534)
 
32
 
33
  ## Uses
34
 
35
+ The inference method is identical to [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ ```python
38
+ import torch
39
+ from transformers import AutoProcessor, LlavaForConditionalGeneration
40
+ from PIL import Image
41
 
42
+ image = Image.open("<path to image>")
43
+ image = image.convert("RGB")
44
 
45
+ question = "What material attribute do the stove, the oven behind the white and dirty wall and the tea_kettle have in common?"
46
 
47
+ codes = """
48
+ selected_wall = select(wall)
49
+ filtered_wall = filter(selected_wall, ['white', 'dirty'])
50
+ related_oven = relate(oven, behind, o, filtered_wall)
51
+ selected_stove = select(stove)
52
+ selected_tea_kettle = select(tea_kettle)
53
+ materials = query_material(related_oven, selected_stove, selected_tea_kettle)
54
+ material = common(materials)
55
+ """
56
 
57
+ prompt = """
58
+ USER: <image>
59
+ Executes the code and logs the results step-by-step to provide an answer to the question.
60
+ Question
61
+ {question}
62
+ Code
63
+ {codes}
64
+ ASSISTANT:
65
+ Log
66
+ """
67
 
68
+ prompt = prompt.format(question=question, codes=codes)
69
 
70
+ model = LlavaForConditionalGeneration.from_pretrained("RE-N-Y/logic2vision", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
71
 
72
+ processor = AutoProcessor.from_pretrained("RE-N-Y/logic2vision")
73
+ processor.tokenizer.pad_token = processor.tokenizer.eos_token
74
+ processor.tokenizer.padding_side = "left"
75
 
76
+ prompts = processor(images=image, text=prompt, return_tensors="pt")
77
 
78
+ generate_ids = model.generate(**inputs, max_new_tokens=256)
79
+ processor.batch_decode(generate_ids, skip_special_tokens=True)
80
+ ```
81
 
82
+ ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ TBD
85
 
86
+ ## Training / Evaluation Details
87
 
88
+ The model has been finetuned using 2 A6000 GPUs on CMU LTI's Babel cluster using. The model has been finetuned using LoRA (`r=8, alpha=16, dropout=0.05, task_type="CAUSAL_LM"`).
89
+ LoRA modules were attached to `["q_proj", "v_proj"]`. We use DDP for distributed training and BF16 to speed up training. For more details, check [our paper](https://arxiv.org/abs/2403.10534)!
90
 
91
  ### Results
92
 
93
+ TBD
94
 
95
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  **BibTeX:**
98
+ ```
99
+ @misc{akter2024visreas,
100
+ title={VISREAS: Complex Visual Reasoning with Unanswerable Questions},
101
+ author={Syeda Nahida Akter and Sangwu Lee and Yingshan Chang and Yonatan Bisk and Eric Nyberg},
102
+ year={2024},
103
+ eprint={2403.10534},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.CV}
106
+ }
107
+ ```
108
+
109
+ ## Model Card Authors
110
+
111
+ TBD