Update README.md
Browse files
README.md
CHANGED
@@ -33,51 +33,123 @@ The model has been finetuned using LoRA to generate python pseudocode outputs to
|
|
33 |
|
34 |
## Uses
|
35 |
|
36 |
-
The inference method is
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
```python
|
39 |
import torch
|
40 |
-
from transformers import
|
|
|
41 |
from PIL import Image
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
Log
|
67 |
"""
|
68 |
|
69 |
-
prompt = prompt.format(question=question, codes=codes)
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
|
|
|
|
78 |
|
79 |
generate_ids = model.generate(**inputs, max_new_tokens=256)
|
80 |
-
processor.batch_decode(generate_ids, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
```
|
82 |
|
83 |
## Bias, Risks, and Limitations
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
36 |
+
The inference method is similar to [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf).
|
37 |
+
|
38 |
+
### Example images
|
39 |
+
|
40 |
+
[zebras.jpg](https://huggingface.co/RE-N-Y/logic2vision/resolve/main/zebras.jpg)
|
41 |
+
|
42 |
+
[room.jpg](https://huggingface.co/RE-N-Y/logic2vision/resolve/main/room.jpg)
|
43 |
|
44 |
```python
|
45 |
import torch
|
46 |
+
from transformers import LlavaProcessor, LlavaForConditionalGeneration
|
47 |
+
import requests
|
48 |
from PIL import Image
|
49 |
|
50 |
+
class LLaVACodeTemplate:
|
51 |
+
prompt = """
|
52 |
+
USER: <image>
|
53 |
+
Executes the code and logs the results step-by-step to provide an answer to the question.
|
54 |
+
Question
|
55 |
+
{question}
|
56 |
+
Code
|
57 |
+
{codes}
|
58 |
+
ASSISTANT:
|
59 |
+
Log
|
60 |
+
"""
|
61 |
+
|
62 |
+
answer = """
|
63 |
+
{logs}
|
64 |
+
Answer:
|
65 |
+
{answer}</s>
|
66 |
+
"""
|
67 |
+
|
68 |
+
template = LLaVACodeTemplate()
|
69 |
+
model = LlavaForConditionalGeneration.from_pretrained("RE-N-Y/logic2vision", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, cache_dir="/data/tir/projects/tir6/general/sakter/cache")
|
70 |
+
model.to("cuda")
|
71 |
+
|
72 |
+
processor = LlavaProcessor.from_pretrained("RE-N-Y/logic2vision")
|
73 |
+
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
74 |
+
processor.tokenizer.padding_side = "left"
|
75 |
|
76 |
+
image = Image.open(requests.get("https://huggingface.co/RE-N-Y/logic2vision/resolve/main/zebras.jpg", stream=True).raw)
|
77 |
+
question = "What else in the image is striped as the rope and the mane to the left of the white clouds?"
|
78 |
+
codes = """selected_clouds = select(clouds)
|
79 |
+
filtered_clouds = filter(selected_clouds, ['white'])
|
80 |
+
related_mane = relate(mane, to the left of, o, filtered_clouds)
|
81 |
+
selected_rope = select(rope)
|
82 |
+
pattern = query_pattern(['selected_rope', 'related_mane'])
|
83 |
+
result = select(objects, attr=pattern)
|
|
|
84 |
"""
|
85 |
|
86 |
+
prompt = template.prompt.format(question=question, codes=codes)
|
87 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt")
|
88 |
+
inputs.to("cuda")
|
89 |
|
90 |
+
generate_ids = model.generate(**inputs, max_new_tokens=256)
|
91 |
+
output = processor.batch_decode(generate_ids, skip_special_tokens=True)
|
92 |
+
print(output[0])
|
93 |
+
|
94 |
+
# USER:
|
95 |
+
# Executes the code and logs the results step-by-step to provide an answer to the question.
|
96 |
+
# Question
|
97 |
+
# What else in the image is striped as the rope and the mane to the left of the white clouds?
|
98 |
+
|
99 |
+
# Code
|
100 |
+
# selected_clouds = select(clouds)
|
101 |
+
# filtered_clouds = filter(selected_clouds, ['white'])
|
102 |
+
# related_mane = relate(mane, to the left of, o, filtered_clouds)
|
103 |
+
# selected_rope = select(rope)
|
104 |
+
# pattern = query_pattern(['selected_rope', 'related_mane'])
|
105 |
+
# result = select(objects, attr=pattern)
|
106 |
+
|
107 |
+
# ASSISTANT:
|
108 |
+
# Log
|
109 |
+
# ('clouds', ['white'])
|
110 |
+
# ('clouds', ['white'])
|
111 |
+
# ('mane', ['striped'])
|
112 |
+
# ('rope', ['no object'])
|
113 |
+
# ['the question itself is problematic']
|
114 |
+
# ['the question itself is problematic']
|
115 |
+
# Answer:
|
116 |
+
# the question itself is problematic
|
117 |
+
|
118 |
+
|
119 |
+
image = Image.open(requests.get("https://huggingface.co/RE-N-Y/logic2vision/resolve/main/room.jpg", stream=True).raw)
|
120 |
+
question = "What material do the chair and the table have in common?"
|
121 |
+
codes = """selected_chair = select(chair)
|
122 |
+
selected_table = select(table)
|
123 |
+
materials = query_material([selected_chair, selected_table])
|
124 |
+
common_material = common(materials)
|
125 |
+
"""
|
126 |
|
127 |
+
prompt = template.prompt.format(question=question, codes=codes)
|
128 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt")
|
129 |
+
inputs.to("cuda")
|
130 |
|
131 |
generate_ids = model.generate(**inputs, max_new_tokens=256)
|
132 |
+
output = processor.batch_decode(generate_ids, skip_special_tokens=True)
|
133 |
+
print(output[0])
|
134 |
+
|
135 |
+
# USER:
|
136 |
+
# Executes the code and logs the results step-by-step to provide an answer to the question.
|
137 |
+
# Question
|
138 |
+
# What material do the chair and the table have in common?
|
139 |
+
# Code
|
140 |
+
# selected_chair = select(chair)
|
141 |
+
# selected_table = select(table)
|
142 |
+
# materials = query_material([selected_chair, selected_table])
|
143 |
+
# common_material = common(materials)
|
144 |
+
|
145 |
+
# ASSISTANT:
|
146 |
+
# Log
|
147 |
+
# ('chair', ['wood'])
|
148 |
+
# ('table', ['wood'])
|
149 |
+
# [['wood'], ['wood']]
|
150 |
+
# ['wood']
|
151 |
+
# Answer:
|
152 |
+
# wood
|
153 |
```
|
154 |
|
155 |
## Bias, Risks, and Limitations
|