bluelike commited on
Commit
cd4c8c1
·
verified ·
1 Parent(s): 95a566e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -147,25 +147,25 @@ from qwen_vl_utils import process_vision_info
147
 
148
  # default: Load the model on the available device(s)
149
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
150
- "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
151
  )
152
 
153
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
154
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
155
- # "Qwen/Qwen2.5-VL-7B-Instruct",
156
  # torch_dtype=torch.bfloat16,
157
  # attn_implementation="flash_attention_2",
158
  # device_map="auto",
159
  # )
160
 
161
  # default processer
162
- processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
163
 
164
  # The default range for the number of visual tokens per image in the model is 4-16384.
165
  # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
166
  # min_pixels = 256*28*28
167
  # max_pixels = 1280*28*28
168
- # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
169
 
170
  messages = [
171
  {
@@ -434,7 +434,7 @@ The model supports a wide range of resolution inputs. By default, it uses the na
434
  min_pixels = 256 * 28 * 28
435
  max_pixels = 1280 * 28 * 28
436
  processor = AutoProcessor.from_pretrained(
437
- "Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
438
  )
439
  ```
440
 
 
147
 
148
  # default: Load the model on the available device(s)
149
  model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
150
+ "Qwen/Qwen2.5-VL-72B-Instruct", torch_dtype="auto", device_map="auto"
151
  )
152
 
153
  # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
154
  # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
155
+ # "Qwen/Qwen2.5-VL-72B-Instruct",
156
  # torch_dtype=torch.bfloat16,
157
  # attn_implementation="flash_attention_2",
158
  # device_map="auto",
159
  # )
160
 
161
  # default processer
162
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct")
163
 
164
  # The default range for the number of visual tokens per image in the model is 4-16384.
165
  # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
166
  # min_pixels = 256*28*28
167
  # max_pixels = 1280*28*28
168
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
169
 
170
  messages = [
171
  {
 
434
  min_pixels = 256 * 28 * 28
435
  max_pixels = 1280 * 28 * 28
436
  processor = AutoProcessor.from_pretrained(
437
+ "Qwen/Qwen2.5-VL-72B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
438
  )
439
  ```
440