Upload 2 files
Browse files- VisionBERT.py +533 -0
- data/Vision_Survey_Cleaned.csv +0 -0
VisionBERT.py
ADDED
|
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Dict
|
| 3 |
+
from datasets import Dataset
|
| 4 |
+
import torch
|
| 5 |
+
from sklearn.metrics import confusion_matrix, precision_recall_fscore_support, accuracy_score
|
| 6 |
+
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForSequenceClassification, DataCollatorWithPadding
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
| 10 |
+
from sklearn.model_selection import train_test_split
|
| 11 |
+
from sklearn.cluster import KMeans
|
| 12 |
+
from torch.nn import CrossEntropyLoss
|
| 13 |
+
import pickle
|
| 14 |
+
|
| 15 |
+
os.environ['OMP_NUM_THREADS'] = '7'
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class WeightedTrainer(Trainer):
|
| 19 |
+
def compute_loss(self, model, inputs, return_outputs: bool = False, num_items_in_batch: int = None):
|
| 20 |
+
"""
|
| 21 |
+
Custom loss computation with sample weights
|
| 22 |
+
"""
|
| 23 |
+
labels = inputs.get("labels")
|
| 24 |
+
weights = inputs.get("weight")
|
| 25 |
+
|
| 26 |
+
# Forward pass
|
| 27 |
+
outputs = model(**{k: v for k, v in inputs.items()
|
| 28 |
+
if k not in ["weight", "labels"]})
|
| 29 |
+
logits = outputs.get("logits")
|
| 30 |
+
|
| 31 |
+
# Add labels back to outputs
|
| 32 |
+
outputs["labels"] = labels
|
| 33 |
+
|
| 34 |
+
# Compute weighted loss
|
| 35 |
+
if weights is not None:
|
| 36 |
+
weights = weights.to(logits.device)
|
| 37 |
+
loss_fct = CrossEntropyLoss(reduction='none')
|
| 38 |
+
loss = loss_fct(logits.view(-1, self.model.config.num_labels),
|
| 39 |
+
labels.view(-1))
|
| 40 |
+
|
| 41 |
+
# Adjust weights if num_items_in_batch is provided
|
| 42 |
+
if num_items_in_batch:
|
| 43 |
+
weights = weights[:num_items_in_batch]
|
| 44 |
+
|
| 45 |
+
loss = (loss * weights.view(-1)).mean()
|
| 46 |
+
else:
|
| 47 |
+
loss_fct = CrossEntropyLoss(label_smoothing=0.1)
|
| 48 |
+
loss = loss_fct(logits.view(-1, self.model.config.num_labels),
|
| 49 |
+
labels.view(-1))
|
| 50 |
+
|
| 51 |
+
outputs["loss"] = loss
|
| 52 |
+
return (loss, outputs) if return_outputs else loss
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def create_feature_vector(df):
|
| 56 |
+
"""Create numerical feature vector for clustering with sample size weighting, handling missing/unseen labels."""
|
| 57 |
+
|
| 58 |
+
# Initialize LabelEncoders
|
| 59 |
+
le_gender = LabelEncoder()
|
| 60 |
+
le_race = LabelEncoder()
|
| 61 |
+
le_risk = LabelEncoder()
|
| 62 |
+
|
| 63 |
+
# Fit and transform while handling missing values
|
| 64 |
+
gender_encoded = le_gender.fit(df['Gender'].unique()).transform(df['Gender'].fillna('Unknown'))
|
| 65 |
+
race_encoded = le_race.fit(df['RaceEthnicity'].unique()).transform(df['RaceEthnicity'].fillna('Unknown'))
|
| 66 |
+
risk_encoded = le_risk.fit(df['RiskFactor'].unique()).transform(df['RiskFactor'].fillna('Unknown'))
|
| 67 |
+
|
| 68 |
+
# Create age groups numerical representation with a default for missing values
|
| 69 |
+
age_map = {
|
| 70 |
+
'12-17 years': 0,
|
| 71 |
+
'18-39 years': 1,
|
| 72 |
+
'40-64 years': 2,
|
| 73 |
+
'65-79 years': 3,
|
| 74 |
+
'80 years and older': 4 # Include all possible labels, even if missing
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
# Use `.get()` with a default value for missing/unseen age groups
|
| 78 |
+
age_encoded = df['Age'].map(lambda x: age_map.get(x, -1))
|
| 79 |
+
|
| 80 |
+
# Combine features
|
| 81 |
+
features = np.column_stack([
|
| 82 |
+
age_encoded,
|
| 83 |
+
gender_encoded,
|
| 84 |
+
race_encoded,
|
| 85 |
+
risk_encoded,
|
| 86 |
+
df['Sample_Size'].values # Add sample size as a feature
|
| 87 |
+
])
|
| 88 |
+
|
| 89 |
+
# Scale features
|
| 90 |
+
scaler = StandardScaler()
|
| 91 |
+
features_scaled = scaler.fit_transform(features)
|
| 92 |
+
|
| 93 |
+
return features_scaled, scaler
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def weighted_kmeans(X, sample_weights, n_clusters, max_iter=300, random_state=42):
|
| 97 |
+
"""Custom K-means implementation that considers sample weights"""
|
| 98 |
+
n_samples = X.shape[0]
|
| 99 |
+
|
| 100 |
+
# Initialize centroids randomly from the weighted distribution
|
| 101 |
+
rng = np.random.RandomState(random_state)
|
| 102 |
+
weighted_indices = rng.choice(n_samples, size=n_clusters, p=sample_weights / sample_weights.sum())
|
| 103 |
+
centroids = X[weighted_indices]
|
| 104 |
+
|
| 105 |
+
for _ in range(max_iter):
|
| 106 |
+
# Assign points to nearest centroid
|
| 107 |
+
distances = np.sqrt(((X[:, np.newaxis] - centroids) ** 2).sum(axis=2))
|
| 108 |
+
labels = np.argmin(distances, axis=1)
|
| 109 |
+
|
| 110 |
+
# Update centroids using weighted means
|
| 111 |
+
new_centroids = np.zeros_like(centroids)
|
| 112 |
+
for k in range(n_clusters):
|
| 113 |
+
mask = labels == k
|
| 114 |
+
if mask.any():
|
| 115 |
+
weights_k = sample_weights[mask]
|
| 116 |
+
new_centroids[k] = np.average(X[mask], axis=0, weights=weights_k)
|
| 117 |
+
|
| 118 |
+
# Check for convergence
|
| 119 |
+
if np.allclose(centroids, new_centroids):
|
| 120 |
+
break
|
| 121 |
+
|
| 122 |
+
centroids = new_centroids
|
| 123 |
+
|
| 124 |
+
return labels, centroids
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def prepare_data(file_path='data/Vision_Survey_Cleaned.csv'):
|
| 128 |
+
"""Load and prepare the vision health dataset with sample-size-aware clustering."""
|
| 129 |
+
print("\nLoading and preparing data...")
|
| 130 |
+
df = pd.read_csv(file_path)
|
| 131 |
+
|
| 132 |
+
# Filter data
|
| 133 |
+
vision_cat = ['Best-corrected visual acuity']
|
| 134 |
+
df = df[df['Question'].isin(vision_cat)].copy()
|
| 135 |
+
df = df[df["RiskFactor"] != "All participants"]
|
| 136 |
+
df = df[df["RiskFactorResponse"] != "Total"]
|
| 137 |
+
|
| 138 |
+
# Reset index after filtering
|
| 139 |
+
df = df.reset_index(drop=True)
|
| 140 |
+
|
| 141 |
+
# Create feature vectors for clustering
|
| 142 |
+
features_scaled, scaler = create_feature_vector(df)
|
| 143 |
+
|
| 144 |
+
# Normalize sample sizes for weights
|
| 145 |
+
sample_weights = df['Sample_Size'].values
|
| 146 |
+
sample_weights = sample_weights / sample_weights.sum()
|
| 147 |
+
|
| 148 |
+
# Apply weighted clustering
|
| 149 |
+
n_clusters = min(5, len(df))
|
| 150 |
+
clusters, centroids = weighted_kmeans(
|
| 151 |
+
features_scaled,
|
| 152 |
+
sample_weights,
|
| 153 |
+
n_clusters=n_clusters
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Add clusters as a column
|
| 157 |
+
df['cluster'] = clusters
|
| 158 |
+
|
| 159 |
+
# Calculate cluster importance based on total sample size in each cluster
|
| 160 |
+
cluster_total_samples = df.groupby('cluster')['Sample_Size'].sum()
|
| 161 |
+
cluster_weights = cluster_total_samples / cluster_total_samples.sum()
|
| 162 |
+
|
| 163 |
+
# Enhanced feature engineering with clustering information
|
| 164 |
+
df['doc'] = df.apply(
|
| 165 |
+
lambda x: f"""
|
| 166 |
+
Patient Demographics:
|
| 167 |
+
- Age Category: {x['Age']}
|
| 168 |
+
- Gender: {x['Gender']}
|
| 169 |
+
- Race/Ethnicity: {x['RaceEthnicity']}
|
| 170 |
+
|
| 171 |
+
Risk Factors:
|
| 172 |
+
- {x['RiskFactor']}: {x['RiskFactorResponse']}
|
| 173 |
+
|
| 174 |
+
Additional Information:
|
| 175 |
+
- Sample Size: {x['Sample_Size']}
|
| 176 |
+
- Cluster Profile: {x['cluster']} (Weight: {cluster_weights.get(x['cluster'], 0):.3f})
|
| 177 |
+
""".strip(),
|
| 178 |
+
axis=1
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# Encode labels
|
| 182 |
+
le = LabelEncoder()
|
| 183 |
+
df['labels'] = le.fit_transform(df['Response'].astype(str))
|
| 184 |
+
|
| 185 |
+
# Combine sample size weights with cluster importance
|
| 186 |
+
df['weight'] = df.apply(
|
| 187 |
+
lambda x: (x['Sample_Size'] / df['Sample_Size'].sum()) *
|
| 188 |
+
cluster_weights.get(x['cluster'], 0),
|
| 189 |
+
axis=1
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Create train and test splits with stratification
|
| 193 |
+
train_df, test_df = train_test_split(
|
| 194 |
+
df,
|
| 195 |
+
test_size=0.2,
|
| 196 |
+
stratify=df['labels'],
|
| 197 |
+
random_state=42
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Convert to dict format
|
| 201 |
+
train_data = {
|
| 202 |
+
'doc': train_df['doc'].tolist(),
|
| 203 |
+
'labels': train_df['labels'].tolist(),
|
| 204 |
+
'weight': train_df['weight'].tolist()
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
test_data = {
|
| 208 |
+
'doc': test_df['doc'].tolist(),
|
| 209 |
+
'labels': test_df['labels'].tolist(),
|
| 210 |
+
'weight': test_df['weight'].tolist()
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
# Convert to datasets
|
| 214 |
+
train_dataset = Dataset.from_dict(train_data)
|
| 215 |
+
test_dataset = Dataset.from_dict(test_data)
|
| 216 |
+
|
| 217 |
+
dataset_dict = {
|
| 218 |
+
'train': train_dataset,
|
| 219 |
+
'test': test_dataset
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
# Print detailed dataset statistics
|
| 223 |
+
print("\nDataset Summary:")
|
| 224 |
+
print(f"Training samples: {len(train_dataset)}")
|
| 225 |
+
print(f"Test samples: {len(test_dataset)}")
|
| 226 |
+
|
| 227 |
+
print("\nCluster Distribution:")
|
| 228 |
+
for i in range(n_clusters):
|
| 229 |
+
cluster_mask = df['cluster'] == i
|
| 230 |
+
cluster_samples = df[cluster_mask]['Sample_Size'].sum()
|
| 231 |
+
print(f"\nCluster {i} (Total samples: {cluster_samples:,}, Weight: {cluster_weights.get(i, 0):.3f}):")
|
| 232 |
+
print("Most common characteristics:")
|
| 233 |
+
for col in ['Age', 'Gender', 'RaceEthnicity', 'RiskFactor']:
|
| 234 |
+
values = df[col][cluster_mask].value_counts().head(3)
|
| 235 |
+
samples = df[cluster_mask].groupby(col)['Sample_Size'].sum().sort_values(ascending=False).head(3)
|
| 236 |
+
print(f"{col}:")
|
| 237 |
+
for val, count in values.items():
|
| 238 |
+
sample_count = samples.get(val, 0) # Use .get() for safety
|
| 239 |
+
print(f" - {val}: {count} groups ({sample_count:,} individuals)")
|
| 240 |
+
|
| 241 |
+
print("\nLabel Distribution:")
|
| 242 |
+
for label, idx in zip(le.classes_, range(len(le.classes_))):
|
| 243 |
+
count = (df['labels'] == idx).sum()
|
| 244 |
+
total_size = df[df['labels'] == idx]['Sample_Size'].sum()
|
| 245 |
+
print(f"{label}: {count} groups, {total_size:,} individuals")
|
| 246 |
+
|
| 247 |
+
return dataset_dict, le
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def main():
|
| 252 |
+
# Setup
|
| 253 |
+
output_dir = "models/vision-classifier"
|
| 254 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 255 |
+
|
| 256 |
+
# Load the dataset
|
| 257 |
+
dataset_dict, label_encoder = prepare_data()
|
| 258 |
+
|
| 259 |
+
# Initialize the tokenizer
|
| 260 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 261 |
+
|
| 262 |
+
# Define tokenization function within main to have access to tokenizer
|
| 263 |
+
def tokenize_function(examples):
|
| 264 |
+
"""Tokenize the input texts and maintain the correct column names"""
|
| 265 |
+
tokenized = tokenizer(
|
| 266 |
+
examples["doc"],
|
| 267 |
+
truncation=True,
|
| 268 |
+
padding='max_length',
|
| 269 |
+
max_length=128,
|
| 270 |
+
return_tensors=None
|
| 271 |
+
)
|
| 272 |
+
# Keep the additional columns
|
| 273 |
+
tokenized['labels'] = examples['labels']
|
| 274 |
+
tokenized['weight'] = examples['weight']
|
| 275 |
+
return tokenized
|
| 276 |
+
|
| 277 |
+
# Tokenize the datasets
|
| 278 |
+
tokenized_datasets = {}
|
| 279 |
+
for split, dataset in dataset_dict.items():
|
| 280 |
+
tokenized_datasets[split] = dataset.map(
|
| 281 |
+
tokenize_function,
|
| 282 |
+
batched=True,
|
| 283 |
+
remove_columns=['doc']
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
# Print sample to verify
|
| 287 |
+
print("\nSample tokenized data:", tokenized_datasets["train"][0])
|
| 288 |
+
|
| 289 |
+
# Initialize the model
|
| 290 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 291 |
+
"distilbert-base-uncased",
|
| 292 |
+
num_labels=len(label_encoder.classes_),
|
| 293 |
+
id2label={i: label for i, label in enumerate(label_encoder.classes_)},
|
| 294 |
+
label2id={label: i for i, label in enumerate(label_encoder.classes_)},
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Data collator
|
| 298 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 299 |
+
|
| 300 |
+
# Check device
|
| 301 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 302 |
+
print(f"\nTraining on device: {device}")
|
| 303 |
+
|
| 304 |
+
# Move model to device
|
| 305 |
+
model.to(device)
|
| 306 |
+
|
| 307 |
+
# Set up training arguments
|
| 308 |
+
training_args = TrainingArguments(
|
| 309 |
+
output_dir=output_dir,
|
| 310 |
+
learning_rate=3e-5,
|
| 311 |
+
per_device_train_batch_size=8,
|
| 312 |
+
per_device_eval_batch_size=8,
|
| 313 |
+
num_train_epochs=7,
|
| 314 |
+
weight_decay=0.01,
|
| 315 |
+
eval_strategy="epoch",
|
| 316 |
+
save_strategy="epoch",
|
| 317 |
+
load_best_model_at_end=True,
|
| 318 |
+
remove_unused_columns=False,
|
| 319 |
+
push_to_hub=True,
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
# Create the Trainer
|
| 323 |
+
trainer = WeightedTrainer(
|
| 324 |
+
model=model,
|
| 325 |
+
args=training_args,
|
| 326 |
+
train_dataset=tokenized_datasets["train"],
|
| 327 |
+
eval_dataset=tokenized_datasets["test"],
|
| 328 |
+
data_collator=data_collator,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# Train the model
|
| 332 |
+
print("\nStarting training...")
|
| 333 |
+
trainer.train()
|
| 334 |
+
|
| 335 |
+
# Save the model
|
| 336 |
+
print("\nSaving model...")
|
| 337 |
+
trainer.save_model(output_dir=os.path.join(output_dir, "model"))
|
| 338 |
+
|
| 339 |
+
# Save the tokenizer
|
| 340 |
+
tokenizer.save_pretrained(os.path.join(output_dir, "tokenizer"))
|
| 341 |
+
|
| 342 |
+
# Save the label encoder
|
| 343 |
+
label_encoder_path = os.path.join(output_dir, "label_encoder.pkl")
|
| 344 |
+
with open(label_encoder_path, 'wb') as f:
|
| 345 |
+
pickle.dump(label_encoder, f)
|
| 346 |
+
|
| 347 |
+
return trainer, model, tokenizer, label_encoder
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def evaluate_model(model, eval_dataset, tokenizer, label_encoder, device) -> Dict:
|
| 351 |
+
"""
|
| 352 |
+
Evaluate model performance using multiple metrics
|
| 353 |
+
"""
|
| 354 |
+
model.eval()
|
| 355 |
+
all_predictions = []
|
| 356 |
+
all_labels = []
|
| 357 |
+
|
| 358 |
+
# Process each example in evaluation dataset
|
| 359 |
+
for item in eval_dataset:
|
| 360 |
+
# Tokenize input
|
| 361 |
+
inputs = tokenizer(
|
| 362 |
+
item['doc'],
|
| 363 |
+
truncation=True,
|
| 364 |
+
padding=True,
|
| 365 |
+
return_tensors="pt"
|
| 366 |
+
)
|
| 367 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 368 |
+
|
| 369 |
+
# Get predictions
|
| 370 |
+
with torch.no_grad():
|
| 371 |
+
outputs = model(**inputs)
|
| 372 |
+
predictions = torch.argmax(outputs.logits, dim=1)
|
| 373 |
+
|
| 374 |
+
all_predictions.extend(predictions.cpu().numpy())
|
| 375 |
+
all_labels.append(item['labels'])
|
| 376 |
+
|
| 377 |
+
# Calculate metrics
|
| 378 |
+
accuracy = accuracy_score(all_labels, all_predictions)
|
| 379 |
+
precision, recall, f1, support = precision_recall_fscore_support(
|
| 380 |
+
all_labels,
|
| 381 |
+
all_predictions,
|
| 382 |
+
average='weighted'
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# Calculate per-class metrics
|
| 386 |
+
per_class_precision, per_class_recall, per_class_f1, _ = precision_recall_fscore_support(
|
| 387 |
+
all_labels,
|
| 388 |
+
all_predictions,
|
| 389 |
+
average=None
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# Create confusion matrix
|
| 393 |
+
conf_matrix = confusion_matrix(all_labels, all_predictions)
|
| 394 |
+
|
| 395 |
+
# Combine metrics
|
| 396 |
+
metrics = {
|
| 397 |
+
'accuracy': accuracy,
|
| 398 |
+
'weighted_precision': precision,
|
| 399 |
+
'weighted_recall': recall,
|
| 400 |
+
'weighted_f1': f1,
|
| 401 |
+
'confusion_matrix': conf_matrix,
|
| 402 |
+
'per_class_metrics': {
|
| 403 |
+
label: {
|
| 404 |
+
'precision': p,
|
| 405 |
+
'recall': r,
|
| 406 |
+
'f1': f
|
| 407 |
+
} for label, p, r, f in zip(
|
| 408 |
+
label_encoder.classes_,
|
| 409 |
+
per_class_precision,
|
| 410 |
+
per_class_recall,
|
| 411 |
+
per_class_f1
|
| 412 |
+
)
|
| 413 |
+
}
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
return metrics
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def print_evaluation_report(metrics: Dict, label_encoder):
|
| 420 |
+
"""
|
| 421 |
+
Print formatted evaluation report
|
| 422 |
+
"""
|
| 423 |
+
print("\n" + "=" * 50)
|
| 424 |
+
print("MODEL EVALUATION REPORT")
|
| 425 |
+
print("=" * 50)
|
| 426 |
+
|
| 427 |
+
print("\nOverall Metrics:")
|
| 428 |
+
print(f"Accuracy: {metrics['accuracy']:.4f}")
|
| 429 |
+
print(f"Weighted Precision: {metrics['weighted_precision']:.4f}")
|
| 430 |
+
print(f"Weighted Recall: {metrics['weighted_recall']:.4f}")
|
| 431 |
+
print(f"Weighted F1-Score: {metrics['weighted_f1']:.4f}")
|
| 432 |
+
|
| 433 |
+
print("\nPer-Class Metrics:")
|
| 434 |
+
print("-" * 50)
|
| 435 |
+
print(f"{'Class':<30} {'Precision':>10} {'Recall':>10} {'F1-Score':>10}")
|
| 436 |
+
print("-" * 50)
|
| 437 |
+
|
| 438 |
+
for label, class_metrics in metrics['per_class_metrics'].items():
|
| 439 |
+
print(
|
| 440 |
+
f"{label:<30} {class_metrics['precision']:>10.4f} {class_metrics['recall']:>10.4f} {class_metrics['f1']:>10.4f}")
|
| 441 |
+
|
| 442 |
+
print("\nConfusion Matrix:")
|
| 443 |
+
print("-" * 50)
|
| 444 |
+
conf_matrix = metrics['confusion_matrix']
|
| 445 |
+
print(conf_matrix)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
if __name__ == "__main__":
|
| 449 |
+
output_dir = "models/vision-classifier"
|
| 450 |
+
model_path = os.path.join(output_dir, "model")
|
| 451 |
+
tokenizer_path = os.path.join(output_dir, "tokenizer")
|
| 452 |
+
|
| 453 |
+
if os.path.exists(model_path):
|
| 454 |
+
print("\nLoading pre-trained model...")
|
| 455 |
+
try:
|
| 456 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 457 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 458 |
+
label_encoder_path = os.path.join(output_dir, "label_encoder.pkl")
|
| 459 |
+
if os.path.exists(label_encoder_path):
|
| 460 |
+
with open(label_encoder_path, 'rb') as f:
|
| 461 |
+
label_encoder = pickle.load(f)
|
| 462 |
+
else:
|
| 463 |
+
print("Warning: Label encoder not found. Running full training...")
|
| 464 |
+
trainer, model, tokenizer, label_encoder = main()
|
| 465 |
+
|
| 466 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 467 |
+
model.to(device)
|
| 468 |
+
print(f"Model loaded successfully and moved to {device}")
|
| 469 |
+
|
| 470 |
+
# Load test dataset for evaluation
|
| 471 |
+
dataset_dict, _ = prepare_data()
|
| 472 |
+
|
| 473 |
+
# Run evaluation
|
| 474 |
+
print("\nEvaluating model performance...")
|
| 475 |
+
eval_metrics = evaluate_model(
|
| 476 |
+
model,
|
| 477 |
+
dataset_dict['test'],
|
| 478 |
+
tokenizer,
|
| 479 |
+
label_encoder,
|
| 480 |
+
device
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
# Print evaluation report
|
| 484 |
+
print_evaluation_report(eval_metrics, label_encoder)
|
| 485 |
+
|
| 486 |
+
except Exception as e:
|
| 487 |
+
print(f"Error loading model: {e}")
|
| 488 |
+
print("Running full training instead...")
|
| 489 |
+
trainer, model, tokenizer, label_encoder = main()
|
| 490 |
+
else:
|
| 491 |
+
print("\nNo pre-trained model found. Running training...")
|
| 492 |
+
trainer, model, tokenizer, label_encoder = main()
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def predict_vision_status(text, model, tokenizer, label_encoder):
|
| 496 |
+
"""Make prediction using the loaded/trained model"""
|
| 497 |
+
inputs = tokenizer(
|
| 498 |
+
text,
|
| 499 |
+
truncation=True,
|
| 500 |
+
padding=True,
|
| 501 |
+
return_tensors="pt"
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
device = next(model.parameters()).device
|
| 505 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 506 |
+
|
| 507 |
+
with torch.no_grad():
|
| 508 |
+
outputs = model(**inputs)
|
| 509 |
+
# Apply softmax to get probabilities
|
| 510 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 511 |
+
|
| 512 |
+
# Convert to numpy array
|
| 513 |
+
probabilities = probabilities.cpu().numpy()[0]
|
| 514 |
+
|
| 515 |
+
# Create list of (label, probability) tuples
|
| 516 |
+
predictions = []
|
| 517 |
+
for idx, prob in enumerate(probabilities):
|
| 518 |
+
label = label_encoder.inverse_transform([idx])[0]
|
| 519 |
+
predictions.append((label, float(prob)))
|
| 520 |
+
|
| 521 |
+
# Sort by probability in descending order
|
| 522 |
+
predictions.sort(key=lambda x: x[1], reverse=True)
|
| 523 |
+
|
| 524 |
+
return predictions
|
| 525 |
+
|
| 526 |
+
example_text = "Age: 40-64 years, Gender: Female, Race: White, non-Hispanic, Diabetes: No"
|
| 527 |
+
predictions = predict_vision_status(example_text, model, tokenizer, label_encoder)
|
| 528 |
+
|
| 529 |
+
print(f"\nPredictions for: {example_text}")
|
| 530 |
+
print("\nLabel Confidence Scores:")
|
| 531 |
+
print("-" * 50)
|
| 532 |
+
for label, confidence in predictions:
|
| 533 |
+
print(f"{label:<30} {confidence:.2%}")
|
data/Vision_Survey_Cleaned.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|