Transformers
GGUF
English
llama
text-generation-inference
unsloth
Eval Results
Inference Endpoints
conversational
File size: 3,810 Bytes
126c6f5
1dff65d
 
 
126c6f5
 
 
 
 
 
1dff65d
c345bc3
 
 
1dff65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126c6f5
 
 
 
 
 
c345bc3
 
 
126c6f5
 
c2b7ff5
1dff65d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
base_model: unsloth/phi-4-unsloth-bnb-4bit
datasets:
- Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
- ServiceNow-AI/R1-Distill-SFT
model-index:
- name: ThinkPhi1.1-Tensors
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 39.08
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/ThinkPhi1.1-Tensors
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.14
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/ThinkPhi1.1-Tensors
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/ThinkPhi1.1-Tensors
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.49
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/ThinkPhi1.1-Tensors
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.28
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/ThinkPhi1.1-Tensors
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 43.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Quazim0t0/ThinkPhi1.1-Tensors
      name: Open LLM Leaderboard
---

# Uploaded  model

- **Developed by:** Quazim0t0
- **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit
- **GGUF**
- **Trained for 4-5 Hours on A800 with the MagPie-Reasoning-V2-CoT-DeepSeek-R1-Llama-70B & ServiceNow-AI/R1-Distill-SFT.**
- **5$ Training...I'm actually amazed by the results.**


If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phithink/
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Quazim0t0__ThinkPhi1.1-Tensors-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |24.90|
|IFEval (0-Shot)    |39.08|
|BBH (3-Shot)       |49.14|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot)      | 6.49|
|MuSR (0-shot)      |11.28|
|MMLU-PRO (5-shot)  |43.42|