Quazim0t0 commited on
Commit
325f5ef
·
verified ·
1 Parent(s): 23d136d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -1
README.md CHANGED
@@ -22,4 +22,71 @@ datasets:
22
  - **Trained for 8 Hours on A800 with the Bespoke Stratos 17k Dataset.**
23
  - **10$ Training...I'm actually amazed by the results.**
24
 
25
- If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phi4_turn_r1_distill_thought_function_v1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  - **Trained for 8 Hours on A800 with the Bespoke Stratos 17k Dataset.**
23
  - **10$ Training...I'm actually amazed by the results.**
24
 
25
+ If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phi4_turn_r1_distill_thought_function_v1
26
+
27
+ # Phi4 Turn R1Distill LoRA Adapters
28
+
29
+ ## Overview
30
+ These **LoRA adapters** were trained using diverse **reasoning datasets** that incorporate structured **Thought** and **Solution** responses to enhance logical inference. This project was designed to **test the R1 dataset** on **Phi-4**, aiming to create a **lightweight, fast, and efficient reasoning model**.
31
+
32
+ All adapters were fine-tuned using an **NVIDIA A800 GPU**, ensuring high performance and compatibility for continued training, merging, or direct deployment.
33
+ As part of an open-source initiative, all resources are made **publicly available** for unrestricted research and development.
34
+
35
+ ---
36
+
37
+ ## LoRA Adapters
38
+ Below are the currently available LoRA fine-tuned adapters (**as of January 30, 2025**):
39
+
40
+ - [Phi4.Turn.R1Distill-Lora1](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora1)
41
+ - [Phi4.Turn.R1Distill-Lora2](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora2)
42
+ - [Phi4.Turn.R1Distill-Lora3](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora3)
43
+ - [Phi4.Turn.R1Distill-Lora4](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora4)
44
+ - [Phi4.Turn.R1Distill-Lora5](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora5)
45
+ - [Phi4.Turn.R1Distill-Lora6](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora6)
46
+ - [Phi4.Turn.R1Distill-Lora7](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora7)
47
+ - [Phi4.Turn.R1Distill-Lora8](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora8)
48
+
49
+ ---
50
+
51
+ ## GGUF Full & Quantized Models
52
+ To facilitate broader testing and real-world inference, **GGUF Full and Quantized versions** have been provided for evaluation on **Open WebUI** and other LLM interfaces.
53
+
54
+ ### **Version 1**
55
+ - [Phi4.Turn.R1Distill.Q8_0](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.Q8_0)
56
+ - [Phi4.Turn.R1Distill.Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.Q4_k)
57
+ - [Phi4.Turn.R1Distill.16bit](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill.16bit)
58
+
59
+ ### **Version 1.1**
60
+ - [Phi4.Turn.R1Distill_v1.1_Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.1_Q4_k)
61
+
62
+ ### **Version 1.2**
63
+ - [Phi4.Turn.R1Distill_v1.2_Q4_k](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.2_Q4_k)
64
+
65
+ ### **Version 1.3**
66
+ - [Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF)
67
+
68
+ ### **Version 1.4**
69
+ - [Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF)
70
+
71
+ ### **Version 1.5**
72
+ - [Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF)
73
+
74
+ ---
75
+
76
+ ## Usage
77
+
78
+ ### **Loading LoRA Adapters with `transformers` and `peft`**
79
+ To load and apply the LoRA adapters on Phi-4, use the following approach:
80
+
81
+ ```python
82
+ from transformers import AutoModelForCausalLM, AutoTokenizer
83
+ from peft import PeftModel
84
+
85
+ base_model = "microsoft/Phi-4"
86
+ lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1"
87
+
88
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
89
+ model = AutoModelForCausalLM.from_pretrained(base_model)
90
+ model = PeftModel.from_pretrained(model, lora_adapter)
91
+
92
+ model.eval()