File size: 1,789 Bytes
88c2edb
 
 
 
 
 
 
 
 
 
8df9f96
 
 
 
 
 
88c2edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df9f96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: easyTermsSummerizer
  results: []
datasets:
- Quake24/paraphrasedPayPal
- Quake24/paraphrasedTwitter
language:
- en
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# easyTermsSummerizer

This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8124
- Rouge1: 0.7533
- Rouge2: 0.6964
- Rougel: 0.6806
- Rougelsum: 0.6793

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log        | 1.0   | 2    | 2.2083          | 0.7332 | 0.6595 | 0.6374 | 0.6376    |
| No log        | 2.0   | 4    | 1.9331          | 0.7776 | 0.7268 | 0.6991 | 0.7005    |
| No log        | 3.0   | 6    | 1.8124          | 0.7533 | 0.6964 | 0.6806 | 0.6793    |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2