Update README.md
Browse files
README.md
CHANGED
@@ -51,24 +51,28 @@ To utilize the LlamaLens model for inference, follow these steps:
|
|
51 |
Use the transformers library to load the LlamaLens model and its tokenizer:
|
52 |
|
53 |
```python
|
54 |
-
from transformers import
|
55 |
|
56 |
model_name = "QCRI/LlamaLens"
|
57 |
-
|
58 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
59 |
```
|
60 |
3. **Prepare the Input:**:
|
61 |
Tokenize your input text:
|
62 |
```python
|
63 |
input_text = "Your input text here"
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
```
|
66 |
4. **Generate the Output:**:
|
67 |
Generate a response using the model:
|
68 |
```python
|
69 |
-
|
70 |
-
|
71 |
-
print(response)
|
72 |
```
|
73 |
|
74 |
## Results
|
|
|
51 |
Use the transformers library to load the LlamaLens model and its tokenizer:
|
52 |
|
53 |
```python
|
54 |
+
from transformers import pipeline
|
55 |
|
56 |
model_name = "QCRI/LlamaLens"
|
57 |
+
pipe = pipeline("text-generation", model=model_name)
|
|
|
58 |
```
|
59 |
3. **Prepare the Input:**:
|
60 |
Tokenize your input text:
|
61 |
```python
|
62 |
input_text = "Your input text here"
|
63 |
+
system_message = "Your system message text here"
|
64 |
+
messages = [
|
65 |
+
{"role": "system", "content": system_message},
|
66 |
+
{"role": "user", "content": input_text},
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
```
|
71 |
4. **Generate the Output:**:
|
72 |
Generate a response using the model:
|
73 |
```python
|
74 |
+
generated_text = pipe(messages, num_return_sequences=1)
|
75 |
+
print(generated_text)
|
|
|
76 |
```
|
77 |
|
78 |
## Results
|