Cristian Sas
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -118,7 +118,89 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
118 |
|
119 |
---
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
|
|
122 |
|
123 |
|
124 |

|
|
|
118 |
|
119 |
---
|
120 |
|
121 |
+
---
|
122 |
+
|
123 |
+
# **📌 Installation Guide: Ollama + LitSeek**
|
124 |
+
|
125 |
+
## **🔹 Step 1: Install Ollama**
|
126 |
+
Ollama is a lightweight framework for running large language models (LLMs) locally.
|
127 |
+
|
128 |
+
### **🖥️ For macOS & Linux**
|
129 |
+
1️⃣ **Open a terminal and run:**
|
130 |
+
```sh
|
131 |
+
curl -fsSL https://ollama.com/install.sh | sh
|
132 |
+
```
|
133 |
+
2️⃣ **Restart your terminal.**
|
134 |
+
|
135 |
+
### **🖥️ For Windows (WSL2 required)**
|
136 |
+
1️⃣ **Enable WSL2 and install Ubuntu:**
|
137 |
+
- Open PowerShell as Administrator and run:
|
138 |
+
```powershell
|
139 |
+
wsl --install
|
140 |
+
```
|
141 |
+
- Restart your computer.
|
142 |
+
|
143 |
+
2️⃣ **Install Ollama inside WSL2:**
|
144 |
+
```sh
|
145 |
+
curl -fsSL https://ollama.com/install.sh | sh
|
146 |
+
```
|
147 |
+
|
148 |
+
3️⃣ **Check if Ollama is installed correctly:**
|
149 |
+
```sh
|
150 |
+
ollama
|
151 |
+
```
|
152 |
+
If it prints the usage instructions, the installation is successful. 🎉
|
153 |
+
|
154 |
+
---
|
155 |
+
|
156 |
+
## **🔹 Step 2: Install LLMLit from Hugging Face**
|
157 |
+
LLMLit can be downloaded and run inside Ollama using the `ollama pull` command.
|
158 |
+
|
159 |
+
1️⃣ **Open a terminal and run:**
|
160 |
+
```sh
|
161 |
+
ollama pull llmlit/LeetSeek-R1-DLlama-8B
|
162 |
+
```
|
163 |
+
|
164 |
+
2️⃣ **Verify the installation:**
|
165 |
+
```sh
|
166 |
+
ollama list
|
167 |
+
```
|
168 |
+
You should see **LLMLit** in the list of installed models. ✅
|
169 |
+
|
170 |
+
---
|
171 |
+
|
172 |
+
## **🔹 Step 3: Run LLMLit in Ollama**
|
173 |
+
After installation, you can interact with **LLMLit** using:
|
174 |
+
|
175 |
+
```sh
|
176 |
+
ollama run llmlit/LeetSeek-R1-DLlama-8B
|
177 |
+
```
|
178 |
+
This starts a local session where you can chat with the model! 🤖
|
179 |
+
|
180 |
+
For custom prompts:
|
181 |
+
```sh
|
182 |
+
ollama run llmlit/LeetSeek-R1-DLlama-8B "Hello, how can I use LLMLit?"
|
183 |
+
```
|
184 |
+
|
185 |
+
---
|
186 |
+
|
187 |
+
## **🔹 Bonus: Use LLMLit in Python**
|
188 |
+
If you want to integrate **LLMLit** into a Python script, install the required library:
|
189 |
+
```sh
|
190 |
+
pip install ollama
|
191 |
+
```
|
192 |
+
|
193 |
+
Then, create a Python script:
|
194 |
+
```python
|
195 |
+
import ollama
|
196 |
+
|
197 |
+
response = ollama.chat(model='llmlit/LeetSeek-R1-DLlama-8B', messages=[{'role': 'user', 'content': 'How does LLMLit work?'}])
|
198 |
+
print(response['message']['content'])
|
199 |
+
```
|
200 |
+
|
201 |
+
---
|
202 |
|
203 |
+
🚀 **Done!** Now you have **Ollama + LLMLit** installed and ready to use locally!
|
204 |
|
205 |
|
206 |

|