ProfessorLeVesseur commited on
Commit
a336123
·
verified ·
1 Parent(s): a789d7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -1
README.md CHANGED
@@ -95,4 +95,27 @@ from transformers import pipeline
95
 
96
  classifier = pipeline("text-classification", model="ProfessorLeVesseur/bert-base-cased-timeframe-classifier")
97
  result = classifier("The meeting will take place tomorrow.")
98
- print(result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  classifier = pipeline("text-classification", model="ProfessorLeVesseur/bert-base-cased-timeframe-classifier")
97
  result = classifier("The meeting will take place tomorrow.")
98
+ print(result)
99
+
100
+ ## How to Use 🚀
101
+
102
+ This model can be used for text classification tasks, either for individual text inputs or for batch processing via a DataFrame. Below are examples of both use cases.
103
+
104
+ ### Classifying Input Text
105
+
106
+ To classify a single piece of text and retrieve the predicted label along with the confidence score, you can use the following code:
107
+
108
+ ```python
109
+ from transformers import pipeline # Import the pipeline function from the transformers library
110
+
111
+ # Initialize a text classification pipeline using the specified model
112
+ classifier = pipeline(
113
+ "text-classification", # Specify the task type as text classification
114
+ model="ProfessorLeVesseur/bert-base-cased-timeframe-classifier" # Specify the model to use from the Hugging Face Model Hub
115
+ )
116
+
117
+ # Use the classifier to predict the label for the input text
118
+ result = classifier("MTSS.ai is the future of education, call it education².") # Classify the input text and store the result
119
+
120
+ # Print the classification result, which includes the predicted label and the confidence score
121
+ print(result) # Output the result to the console