Update README.md
Browse files
README.md
CHANGED
@@ -14,3 +14,42 @@ datasets:
|
|
14 |
license_name: gemma-terms-of-use
|
15 |
license_link: https://ai.google.dev/gemma/terms
|
16 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
license_name: gemma-terms-of-use
|
15 |
license_link: https://ai.google.dev/gemma/terms
|
16 |
---
|
17 |
+
|
18 |
+
# Code-Gemma-2B
|
19 |
+
accelarate
|
20 |
+
### Description
|
21 |
+
Code-Gemma was finetuned on the CodeAlpaca-20k dataset using the unsloth library to enhance the Gemma-2B-it model.
|
22 |
+
|
23 |
+
### Usage
|
24 |
+
|
25 |
+
Below we share some code snippets on how to get quickly started with running the model.
|
26 |
+
|
27 |
+
```python
|
28 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
29 |
+
if major_version >= 8:
|
30 |
+
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
|
31 |
+
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
|
32 |
+
else:
|
33 |
+
# Use this for older GPUs (V100, Tesla T4, RTX 20xx)
|
34 |
+
!pip install --no-deps xformers trl peft accelerate bitsandbytes
|
35 |
+
pass
|
36 |
+
```
|
37 |
+
|
38 |
+
#### Running the model on a GPU using different precisions
|
39 |
+
|
40 |
+
* _Using `torch.float16`_
|
41 |
+
|
42 |
+
```python
|
43 |
+
|
44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("Praneeth/code-gemma-2b-it")
|
47 |
+
model = AutoModelForCausalLM.from_pretrained("Praneeth/code-gemma-2b-it", device_map="auto", torch_dtype=torch.float16)
|
48 |
+
|
49 |
+
input_text = "Write me a poem about Machine Learning."
|
50 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
51 |
+
|
52 |
+
outputs = model.generate(**input_ids)
|
53 |
+
print(tokenizer.decode(outputs[0]))
|
54 |
+
```
|
55 |
+
|