Training in progress, step 10000, checkpoint
Browse files- last-checkpoint/README.md +202 -0
- last-checkpoint/adapter_config.json +34 -0
- last-checkpoint/adapter_model.safetensors +3 -0
- last-checkpoint/global_step10000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step10000/mp_rank_00_model_states.pt +3 -0
- last-checkpoint/latest +1 -0
- last-checkpoint/rng_state.pth +3 -0
- last-checkpoint/trainer_state.json +1440 -0
- last-checkpoint/training_args.bin +3 -0
- last-checkpoint/zero_to_fp32.py +604 -0
last-checkpoint/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
last-checkpoint/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Meta-Llama-3-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"o_proj",
|
25 |
+
"up_proj",
|
26 |
+
"down_proj",
|
27 |
+
"k_proj",
|
28 |
+
"v_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
last-checkpoint/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1474cf437e6fcee5d794193be670d628b5ab5c1f0fd155eca54aae05745396f0
|
3 |
+
size 42002584
|
last-checkpoint/global_step10000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9aa83cd559642330de39ef0589c699f240311dfbf19742ae25c68194f121e3f
|
3 |
+
size 251710672
|
last-checkpoint/global_step10000/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e491c98b4c6ae85bbc78fee7bbb1120024331b8b6556148937b423b5555c662d
|
3 |
+
size 153747385
|
last-checkpoint/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step10000
|
last-checkpoint/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72c3a70cd1bd8ddf95e5dbee237f75f88a88c828d3ba3a83a9ec614b92f4bae4
|
3 |
+
size 14244
|
last-checkpoint/trainer_state.json
ADDED
@@ -0,0 +1,1440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.29856985041650497,
|
5 |
+
"eval_steps": 1000,
|
6 |
+
"global_step": 10000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 2.9856985041650495e-05,
|
13 |
+
"grad_norm": 8.064935684204102,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 3.4849,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0014928492520825246,
|
20 |
+
"grad_norm": 3.3433420658111572,
|
21 |
+
"learning_rate": 0.00019998742849959144,
|
22 |
+
"loss": 1.9038,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0029856985041650493,
|
27 |
+
"grad_norm": 2.907883405685425,
|
28 |
+
"learning_rate": 0.0001999731427036726,
|
29 |
+
"loss": 1.608,
|
30 |
+
"step": 100
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.004478547756247574,
|
34 |
+
"grad_norm": 3.2614288330078125,
|
35 |
+
"learning_rate": 0.00019995885690775376,
|
36 |
+
"loss": 1.5505,
|
37 |
+
"step": 150
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.005971397008330099,
|
41 |
+
"grad_norm": 3.8400654792785645,
|
42 |
+
"learning_rate": 0.00019994457111183493,
|
43 |
+
"loss": 1.5737,
|
44 |
+
"step": 200
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.007464246260412624,
|
48 |
+
"grad_norm": 3.3358442783355713,
|
49 |
+
"learning_rate": 0.00019993028531591612,
|
50 |
+
"loss": 1.567,
|
51 |
+
"step": 250
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.008957095512495149,
|
55 |
+
"grad_norm": 2.131911277770996,
|
56 |
+
"learning_rate": 0.00019991599951999726,
|
57 |
+
"loss": 1.5208,
|
58 |
+
"step": 300
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.010449944764577673,
|
62 |
+
"grad_norm": 3.180992364883423,
|
63 |
+
"learning_rate": 0.00019990171372407845,
|
64 |
+
"loss": 1.5586,
|
65 |
+
"step": 350
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.011942794016660197,
|
69 |
+
"grad_norm": 3.024989128112793,
|
70 |
+
"learning_rate": 0.0001998874279281596,
|
71 |
+
"loss": 1.5267,
|
72 |
+
"step": 400
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.013435643268742723,
|
76 |
+
"grad_norm": 3.4935102462768555,
|
77 |
+
"learning_rate": 0.00019987314213224078,
|
78 |
+
"loss": 1.5609,
|
79 |
+
"step": 450
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.014928492520825247,
|
83 |
+
"grad_norm": 3.565504550933838,
|
84 |
+
"learning_rate": 0.00019985885633632194,
|
85 |
+
"loss": 1.5112,
|
86 |
+
"step": 500
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01642134177290777,
|
90 |
+
"grad_norm": 2.0692882537841797,
|
91 |
+
"learning_rate": 0.00019984457054040308,
|
92 |
+
"loss": 1.5087,
|
93 |
+
"step": 550
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.017914191024990297,
|
97 |
+
"grad_norm": 4.110323905944824,
|
98 |
+
"learning_rate": 0.00019983028474448427,
|
99 |
+
"loss": 1.5073,
|
100 |
+
"step": 600
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.01940704027707282,
|
104 |
+
"grad_norm": 2.8632736206054688,
|
105 |
+
"learning_rate": 0.0001998159989485654,
|
106 |
+
"loss": 1.472,
|
107 |
+
"step": 650
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.020899889529155346,
|
111 |
+
"grad_norm": 2.629347324371338,
|
112 |
+
"learning_rate": 0.0001998017131526466,
|
113 |
+
"loss": 1.5236,
|
114 |
+
"step": 700
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.022392738781237872,
|
118 |
+
"grad_norm": 3.696873188018799,
|
119 |
+
"learning_rate": 0.00019978742735672774,
|
120 |
+
"loss": 1.5216,
|
121 |
+
"step": 750
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.023885588033320394,
|
125 |
+
"grad_norm": 3.253305435180664,
|
126 |
+
"learning_rate": 0.00019977314156080893,
|
127 |
+
"loss": 1.5915,
|
128 |
+
"step": 800
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.02537843728540292,
|
132 |
+
"grad_norm": 2.9587886333465576,
|
133 |
+
"learning_rate": 0.0001997588557648901,
|
134 |
+
"loss": 1.4862,
|
135 |
+
"step": 850
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.026871286537485446,
|
139 |
+
"grad_norm": 3.3311073780059814,
|
140 |
+
"learning_rate": 0.00019974456996897126,
|
141 |
+
"loss": 1.4703,
|
142 |
+
"step": 900
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.02836413578956797,
|
146 |
+
"grad_norm": 2.5960264205932617,
|
147 |
+
"learning_rate": 0.00019973028417305243,
|
148 |
+
"loss": 1.4818,
|
149 |
+
"step": 950
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.029856985041650495,
|
153 |
+
"grad_norm": 3.3142144680023193,
|
154 |
+
"learning_rate": 0.0001997159983771336,
|
155 |
+
"loss": 1.4746,
|
156 |
+
"step": 1000
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.03134983429373302,
|
160 |
+
"grad_norm": 3.5049827098846436,
|
161 |
+
"learning_rate": 0.00019970171258121476,
|
162 |
+
"loss": 1.442,
|
163 |
+
"step": 1050
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.03284268354581554,
|
167 |
+
"grad_norm": 3.0218605995178223,
|
168 |
+
"learning_rate": 0.00019968742678529592,
|
169 |
+
"loss": 1.5265,
|
170 |
+
"step": 1100
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.03433553279789807,
|
174 |
+
"grad_norm": 2.936182975769043,
|
175 |
+
"learning_rate": 0.00019967314098937709,
|
176 |
+
"loss": 1.5174,
|
177 |
+
"step": 1150
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.035828382049980595,
|
181 |
+
"grad_norm": 2.877253293991089,
|
182 |
+
"learning_rate": 0.00019965885519345825,
|
183 |
+
"loss": 1.4499,
|
184 |
+
"step": 1200
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.03732123130206312,
|
188 |
+
"grad_norm": 6.07016658782959,
|
189 |
+
"learning_rate": 0.00019964456939753941,
|
190 |
+
"loss": 1.4542,
|
191 |
+
"step": 1250
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.03881408055414564,
|
195 |
+
"grad_norm": 2.1618189811706543,
|
196 |
+
"learning_rate": 0.0001996302836016206,
|
197 |
+
"loss": 1.4343,
|
198 |
+
"step": 1300
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.040306929806228166,
|
202 |
+
"grad_norm": 2.8267719745635986,
|
203 |
+
"learning_rate": 0.00019961599780570174,
|
204 |
+
"loss": 1.463,
|
205 |
+
"step": 1350
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.04179977905831069,
|
209 |
+
"grad_norm": 2.6036462783813477,
|
210 |
+
"learning_rate": 0.00019960171200978294,
|
211 |
+
"loss": 1.4557,
|
212 |
+
"step": 1400
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.04329262831039322,
|
216 |
+
"grad_norm": 3.0187127590179443,
|
217 |
+
"learning_rate": 0.00019958742621386407,
|
218 |
+
"loss": 1.4472,
|
219 |
+
"step": 1450
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.044785477562475744,
|
223 |
+
"grad_norm": 3.9822633266448975,
|
224 |
+
"learning_rate": 0.00019957314041794526,
|
225 |
+
"loss": 1.4384,
|
226 |
+
"step": 1500
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.04627832681455826,
|
230 |
+
"grad_norm": 2.919654607772827,
|
231 |
+
"learning_rate": 0.0001995588546220264,
|
232 |
+
"loss": 1.4969,
|
233 |
+
"step": 1550
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.04777117606664079,
|
237 |
+
"grad_norm": 2.922963857650757,
|
238 |
+
"learning_rate": 0.0001995445688261076,
|
239 |
+
"loss": 1.4987,
|
240 |
+
"step": 1600
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.049264025318723315,
|
244 |
+
"grad_norm": 2.9638512134552,
|
245 |
+
"learning_rate": 0.00019953028303018876,
|
246 |
+
"loss": 1.4722,
|
247 |
+
"step": 1650
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.05075687457080584,
|
251 |
+
"grad_norm": 3.408391237258911,
|
252 |
+
"learning_rate": 0.00019951599723426992,
|
253 |
+
"loss": 1.4723,
|
254 |
+
"step": 1700
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.052249723822888366,
|
258 |
+
"grad_norm": 3.023597240447998,
|
259 |
+
"learning_rate": 0.0001995017114383511,
|
260 |
+
"loss": 1.4478,
|
261 |
+
"step": 1750
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.05374257307497089,
|
265 |
+
"grad_norm": 2.1655213832855225,
|
266 |
+
"learning_rate": 0.00019948742564243225,
|
267 |
+
"loss": 1.4071,
|
268 |
+
"step": 1800
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.05523542232705341,
|
272 |
+
"grad_norm": 3.796663999557495,
|
273 |
+
"learning_rate": 0.00019947313984651342,
|
274 |
+
"loss": 1.446,
|
275 |
+
"step": 1850
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.05672827157913594,
|
279 |
+
"grad_norm": 3.0415594577789307,
|
280 |
+
"learning_rate": 0.00019945885405059458,
|
281 |
+
"loss": 1.4324,
|
282 |
+
"step": 1900
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.05822112083121846,
|
286 |
+
"grad_norm": 2.524627685546875,
|
287 |
+
"learning_rate": 0.00019944456825467575,
|
288 |
+
"loss": 1.3963,
|
289 |
+
"step": 1950
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.05971397008330099,
|
293 |
+
"grad_norm": 3.2881991863250732,
|
294 |
+
"learning_rate": 0.0001994302824587569,
|
295 |
+
"loss": 1.4522,
|
296 |
+
"step": 2000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.061206819335383515,
|
300 |
+
"grad_norm": 3.392430067062378,
|
301 |
+
"learning_rate": 0.00019941599666283808,
|
302 |
+
"loss": 1.4329,
|
303 |
+
"step": 2050
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.06269966858746603,
|
307 |
+
"grad_norm": 3.9426393508911133,
|
308 |
+
"learning_rate": 0.00019940171086691927,
|
309 |
+
"loss": 1.5203,
|
310 |
+
"step": 2100
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.06419251783954856,
|
314 |
+
"grad_norm": 3.3737235069274902,
|
315 |
+
"learning_rate": 0.0001993874250710004,
|
316 |
+
"loss": 1.3674,
|
317 |
+
"step": 2150
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.06568536709163109,
|
321 |
+
"grad_norm": 3.783085346221924,
|
322 |
+
"learning_rate": 0.0001993731392750816,
|
323 |
+
"loss": 1.4339,
|
324 |
+
"step": 2200
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.06717821634371361,
|
328 |
+
"grad_norm": 3.4819202423095703,
|
329 |
+
"learning_rate": 0.00019935885347916273,
|
330 |
+
"loss": 1.4436,
|
331 |
+
"step": 2250
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.06867106559579614,
|
335 |
+
"grad_norm": 3.141775608062744,
|
336 |
+
"learning_rate": 0.00019934456768324393,
|
337 |
+
"loss": 1.4683,
|
338 |
+
"step": 2300
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.07016391484787866,
|
342 |
+
"grad_norm": 3.2881035804748535,
|
343 |
+
"learning_rate": 0.00019933028188732506,
|
344 |
+
"loss": 1.4395,
|
345 |
+
"step": 2350
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.07165676409996119,
|
349 |
+
"grad_norm": 3.718122959136963,
|
350 |
+
"learning_rate": 0.00019931599609140626,
|
351 |
+
"loss": 1.4396,
|
352 |
+
"step": 2400
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.07314961335204372,
|
356 |
+
"grad_norm": 4.3829474449157715,
|
357 |
+
"learning_rate": 0.00019930171029548742,
|
358 |
+
"loss": 1.4477,
|
359 |
+
"step": 2450
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.07464246260412624,
|
363 |
+
"grad_norm": 3.3698525428771973,
|
364 |
+
"learning_rate": 0.00019928742449956858,
|
365 |
+
"loss": 1.3529,
|
366 |
+
"step": 2500
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.07613531185620875,
|
370 |
+
"grad_norm": 3.7569565773010254,
|
371 |
+
"learning_rate": 0.00019927313870364975,
|
372 |
+
"loss": 1.4246,
|
373 |
+
"step": 2550
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.07762816110829128,
|
377 |
+
"grad_norm": 3.1486406326293945,
|
378 |
+
"learning_rate": 0.00019925885290773091,
|
379 |
+
"loss": 1.3813,
|
380 |
+
"step": 2600
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.0791210103603738,
|
384 |
+
"grad_norm": 4.0635480880737305,
|
385 |
+
"learning_rate": 0.00019924456711181208,
|
386 |
+
"loss": 1.4259,
|
387 |
+
"step": 2650
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.08061385961245633,
|
391 |
+
"grad_norm": 3.2710611820220947,
|
392 |
+
"learning_rate": 0.00019923028131589324,
|
393 |
+
"loss": 1.3747,
|
394 |
+
"step": 2700
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.08210670886453886,
|
398 |
+
"grad_norm": 3.4968345165252686,
|
399 |
+
"learning_rate": 0.0001992159955199744,
|
400 |
+
"loss": 1.4721,
|
401 |
+
"step": 2750
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.08359955811662138,
|
405 |
+
"grad_norm": 4.274214267730713,
|
406 |
+
"learning_rate": 0.00019920170972405557,
|
407 |
+
"loss": 1.437,
|
408 |
+
"step": 2800
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.08509240736870391,
|
412 |
+
"grad_norm": 2.970602512359619,
|
413 |
+
"learning_rate": 0.00019918742392813674,
|
414 |
+
"loss": 1.3336,
|
415 |
+
"step": 2850
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.08658525662078644,
|
419 |
+
"grad_norm": 4.143342971801758,
|
420 |
+
"learning_rate": 0.00019917313813221793,
|
421 |
+
"loss": 1.4264,
|
422 |
+
"step": 2900
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.08807810587286896,
|
426 |
+
"grad_norm": 3.7546920776367188,
|
427 |
+
"learning_rate": 0.00019915885233629907,
|
428 |
+
"loss": 1.441,
|
429 |
+
"step": 2950
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.08957095512495149,
|
433 |
+
"grad_norm": 3.9160516262054443,
|
434 |
+
"learning_rate": 0.00019914456654038026,
|
435 |
+
"loss": 1.4261,
|
436 |
+
"step": 3000
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.09106380437703401,
|
440 |
+
"grad_norm": 3.842073917388916,
|
441 |
+
"learning_rate": 0.0001991302807444614,
|
442 |
+
"loss": 1.4076,
|
443 |
+
"step": 3050
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.09255665362911653,
|
447 |
+
"grad_norm": 4.392395496368408,
|
448 |
+
"learning_rate": 0.0001991159949485426,
|
449 |
+
"loss": 1.3789,
|
450 |
+
"step": 3100
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.09404950288119905,
|
454 |
+
"grad_norm": 3.822425603866577,
|
455 |
+
"learning_rate": 0.00019910170915262373,
|
456 |
+
"loss": 1.3877,
|
457 |
+
"step": 3150
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.09554235213328158,
|
461 |
+
"grad_norm": 3.1348562240600586,
|
462 |
+
"learning_rate": 0.0001990874233567049,
|
463 |
+
"loss": 1.4081,
|
464 |
+
"step": 3200
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.0970352013853641,
|
468 |
+
"grad_norm": 3.453887939453125,
|
469 |
+
"learning_rate": 0.00019907313756078608,
|
470 |
+
"loss": 1.4143,
|
471 |
+
"step": 3250
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.09852805063744663,
|
475 |
+
"grad_norm": 3.5057384967803955,
|
476 |
+
"learning_rate": 0.00019905885176486722,
|
477 |
+
"loss": 1.4264,
|
478 |
+
"step": 3300
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.10002089988952916,
|
482 |
+
"grad_norm": 3.145796060562134,
|
483 |
+
"learning_rate": 0.0001990445659689484,
|
484 |
+
"loss": 1.4368,
|
485 |
+
"step": 3350
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.10151374914161168,
|
489 |
+
"grad_norm": 3.4077043533325195,
|
490 |
+
"learning_rate": 0.00019903028017302955,
|
491 |
+
"loss": 1.388,
|
492 |
+
"step": 3400
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.10300659839369421,
|
496 |
+
"grad_norm": 3.65567946434021,
|
497 |
+
"learning_rate": 0.00019901599437711074,
|
498 |
+
"loss": 1.42,
|
499 |
+
"step": 3450
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.10449944764577673,
|
503 |
+
"grad_norm": 4.460702419281006,
|
504 |
+
"learning_rate": 0.0001990017085811919,
|
505 |
+
"loss": 1.3991,
|
506 |
+
"step": 3500
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.10599229689785926,
|
510 |
+
"grad_norm": 4.155653476715088,
|
511 |
+
"learning_rate": 0.00019898742278527307,
|
512 |
+
"loss": 1.371,
|
513 |
+
"step": 3550
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.10748514614994178,
|
517 |
+
"grad_norm": 3.8904318809509277,
|
518 |
+
"learning_rate": 0.00019897313698935423,
|
519 |
+
"loss": 1.4378,
|
520 |
+
"step": 3600
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.1089779954020243,
|
524 |
+
"grad_norm": 4.0509233474731445,
|
525 |
+
"learning_rate": 0.0001989588511934354,
|
526 |
+
"loss": 1.3945,
|
527 |
+
"step": 3650
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.11047084465410682,
|
531 |
+
"grad_norm": 3.785123109817505,
|
532 |
+
"learning_rate": 0.00019894456539751656,
|
533 |
+
"loss": 1.436,
|
534 |
+
"step": 3700
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.11196369390618935,
|
538 |
+
"grad_norm": 3.4556167125701904,
|
539 |
+
"learning_rate": 0.00019893027960159773,
|
540 |
+
"loss": 1.3794,
|
541 |
+
"step": 3750
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.11345654315827187,
|
545 |
+
"grad_norm": 4.0479559898376465,
|
546 |
+
"learning_rate": 0.0001989159938056789,
|
547 |
+
"loss": 1.4734,
|
548 |
+
"step": 3800
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.1149493924103544,
|
552 |
+
"grad_norm": 3.890805721282959,
|
553 |
+
"learning_rate": 0.00019890170800976006,
|
554 |
+
"loss": 1.4341,
|
555 |
+
"step": 3850
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.11644224166243693,
|
559 |
+
"grad_norm": 3.8178727626800537,
|
560 |
+
"learning_rate": 0.00019888742221384122,
|
561 |
+
"loss": 1.4754,
|
562 |
+
"step": 3900
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.11793509091451945,
|
566 |
+
"grad_norm": 2.456165075302124,
|
567 |
+
"learning_rate": 0.00019887313641792241,
|
568 |
+
"loss": 1.3887,
|
569 |
+
"step": 3950
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.11942794016660198,
|
573 |
+
"grad_norm": 3.5763051509857178,
|
574 |
+
"learning_rate": 0.00019885885062200355,
|
575 |
+
"loss": 1.3901,
|
576 |
+
"step": 4000
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.1209207894186845,
|
580 |
+
"grad_norm": 3.885662317276001,
|
581 |
+
"learning_rate": 0.00019884456482608474,
|
582 |
+
"loss": 1.3856,
|
583 |
+
"step": 4050
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.12241363867076703,
|
587 |
+
"grad_norm": 3.6095409393310547,
|
588 |
+
"learning_rate": 0.00019883027903016588,
|
589 |
+
"loss": 1.448,
|
590 |
+
"step": 4100
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.12390648792284956,
|
594 |
+
"grad_norm": 3.7112534046173096,
|
595 |
+
"learning_rate": 0.00019881599323424707,
|
596 |
+
"loss": 1.3537,
|
597 |
+
"step": 4150
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.12539933717493207,
|
601 |
+
"grad_norm": 3.3566672801971436,
|
602 |
+
"learning_rate": 0.0001988017074383282,
|
603 |
+
"loss": 1.4389,
|
604 |
+
"step": 4200
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.1268921864270146,
|
608 |
+
"grad_norm": 4.570401191711426,
|
609 |
+
"learning_rate": 0.0001987874216424094,
|
610 |
+
"loss": 1.4191,
|
611 |
+
"step": 4250
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.12838503567909712,
|
615 |
+
"grad_norm": 4.455029010772705,
|
616 |
+
"learning_rate": 0.00019877313584649057,
|
617 |
+
"loss": 1.3677,
|
618 |
+
"step": 4300
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.12987788493117966,
|
622 |
+
"grad_norm": 3.0861828327178955,
|
623 |
+
"learning_rate": 0.00019875885005057173,
|
624 |
+
"loss": 1.3677,
|
625 |
+
"step": 4350
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.13137073418326217,
|
629 |
+
"grad_norm": 4.419896602630615,
|
630 |
+
"learning_rate": 0.0001987445642546529,
|
631 |
+
"loss": 1.4524,
|
632 |
+
"step": 4400
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.1328635834353447,
|
636 |
+
"grad_norm": 5.187576770782471,
|
637 |
+
"learning_rate": 0.00019873027845873406,
|
638 |
+
"loss": 1.3868,
|
639 |
+
"step": 4450
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.13435643268742722,
|
643 |
+
"grad_norm": 5.111696243286133,
|
644 |
+
"learning_rate": 0.00019871599266281523,
|
645 |
+
"loss": 1.4458,
|
646 |
+
"step": 4500
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.13584928193950974,
|
650 |
+
"grad_norm": 3.2652997970581055,
|
651 |
+
"learning_rate": 0.0001987017068668964,
|
652 |
+
"loss": 1.4529,
|
653 |
+
"step": 4550
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.13734213119159228,
|
657 |
+
"grad_norm": 4.190273761749268,
|
658 |
+
"learning_rate": 0.00019868742107097755,
|
659 |
+
"loss": 1.3991,
|
660 |
+
"step": 4600
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.1388349804436748,
|
664 |
+
"grad_norm": 4.85620641708374,
|
665 |
+
"learning_rate": 0.00019867313527505872,
|
666 |
+
"loss": 1.3916,
|
667 |
+
"step": 4650
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.14032782969575733,
|
671 |
+
"grad_norm": 3.030954360961914,
|
672 |
+
"learning_rate": 0.00019865884947913988,
|
673 |
+
"loss": 1.3805,
|
674 |
+
"step": 4700
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.14182067894783984,
|
678 |
+
"grad_norm": 3.264406681060791,
|
679 |
+
"learning_rate": 0.00019864456368322108,
|
680 |
+
"loss": 1.4048,
|
681 |
+
"step": 4750
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.14331352819992238,
|
685 |
+
"grad_norm": 3.2138588428497314,
|
686 |
+
"learning_rate": 0.0001986302778873022,
|
687 |
+
"loss": 1.4092,
|
688 |
+
"step": 4800
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.1448063774520049,
|
692 |
+
"grad_norm": 3.847222328186035,
|
693 |
+
"learning_rate": 0.0001986159920913834,
|
694 |
+
"loss": 1.3871,
|
695 |
+
"step": 4850
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.14629922670408743,
|
699 |
+
"grad_norm": 4.004987716674805,
|
700 |
+
"learning_rate": 0.00019860170629546454,
|
701 |
+
"loss": 1.3845,
|
702 |
+
"step": 4900
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.14779207595616994,
|
706 |
+
"grad_norm": 3.5088725090026855,
|
707 |
+
"learning_rate": 0.00019858742049954573,
|
708 |
+
"loss": 1.379,
|
709 |
+
"step": 4950
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.14928492520825248,
|
713 |
+
"grad_norm": 3.275099277496338,
|
714 |
+
"learning_rate": 0.00019857313470362687,
|
715 |
+
"loss": 1.3628,
|
716 |
+
"step": 5000
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.150777774460335,
|
720 |
+
"grad_norm": 3.7903060913085938,
|
721 |
+
"learning_rate": 0.00019855884890770806,
|
722 |
+
"loss": 1.3804,
|
723 |
+
"step": 5050
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.1522706237124175,
|
727 |
+
"grad_norm": 4.294798374176025,
|
728 |
+
"learning_rate": 0.00019854456311178923,
|
729 |
+
"loss": 1.3988,
|
730 |
+
"step": 5100
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.15376347296450005,
|
734 |
+
"grad_norm": 3.2719295024871826,
|
735 |
+
"learning_rate": 0.0001985302773158704,
|
736 |
+
"loss": 1.387,
|
737 |
+
"step": 5150
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.15525632221658256,
|
741 |
+
"grad_norm": 4.143224239349365,
|
742 |
+
"learning_rate": 0.00019851599151995156,
|
743 |
+
"loss": 1.393,
|
744 |
+
"step": 5200
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.1567491714686651,
|
748 |
+
"grad_norm": 3.404754638671875,
|
749 |
+
"learning_rate": 0.00019850170572403272,
|
750 |
+
"loss": 1.4205,
|
751 |
+
"step": 5250
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.1582420207207476,
|
755 |
+
"grad_norm": 3.607126474380493,
|
756 |
+
"learning_rate": 0.0001984874199281139,
|
757 |
+
"loss": 1.4239,
|
758 |
+
"step": 5300
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.15973486997283015,
|
762 |
+
"grad_norm": 4.140823841094971,
|
763 |
+
"learning_rate": 0.00019847313413219505,
|
764 |
+
"loss": 1.4204,
|
765 |
+
"step": 5350
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.16122771922491266,
|
769 |
+
"grad_norm": 3.893251419067383,
|
770 |
+
"learning_rate": 0.00019845884833627622,
|
771 |
+
"loss": 1.392,
|
772 |
+
"step": 5400
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.1627205684769952,
|
776 |
+
"grad_norm": 4.304211139678955,
|
777 |
+
"learning_rate": 0.00019844456254035738,
|
778 |
+
"loss": 1.44,
|
779 |
+
"step": 5450
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.16421341772907772,
|
783 |
+
"grad_norm": 5.273501873016357,
|
784 |
+
"learning_rate": 0.00019843027674443855,
|
785 |
+
"loss": 1.445,
|
786 |
+
"step": 5500
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.16570626698116026,
|
790 |
+
"grad_norm": 4.787700176239014,
|
791 |
+
"learning_rate": 0.00019841599094851974,
|
792 |
+
"loss": 1.3668,
|
793 |
+
"step": 5550
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.16719911623324277,
|
797 |
+
"grad_norm": 3.7984108924865723,
|
798 |
+
"learning_rate": 0.00019840170515260087,
|
799 |
+
"loss": 1.3523,
|
800 |
+
"step": 5600
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.16869196548532528,
|
804 |
+
"grad_norm": 3.885608673095703,
|
805 |
+
"learning_rate": 0.00019838741935668207,
|
806 |
+
"loss": 1.3917,
|
807 |
+
"step": 5650
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.17018481473740782,
|
811 |
+
"grad_norm": 3.459803342819214,
|
812 |
+
"learning_rate": 0.0001983731335607632,
|
813 |
+
"loss": 1.3833,
|
814 |
+
"step": 5700
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.17167766398949033,
|
818 |
+
"grad_norm": 3.7103006839752197,
|
819 |
+
"learning_rate": 0.0001983588477648444,
|
820 |
+
"loss": 1.4473,
|
821 |
+
"step": 5750
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.17317051324157287,
|
825 |
+
"grad_norm": 6.645928382873535,
|
826 |
+
"learning_rate": 0.00019834456196892553,
|
827 |
+
"loss": 1.3706,
|
828 |
+
"step": 5800
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.17466336249365538,
|
832 |
+
"grad_norm": 3.7201037406921387,
|
833 |
+
"learning_rate": 0.0001983302761730067,
|
834 |
+
"loss": 1.3733,
|
835 |
+
"step": 5850
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.17615621174573792,
|
839 |
+
"grad_norm": 4.050106048583984,
|
840 |
+
"learning_rate": 0.0001983159903770879,
|
841 |
+
"loss": 1.4096,
|
842 |
+
"step": 5900
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.17764906099782043,
|
846 |
+
"grad_norm": 4.190842628479004,
|
847 |
+
"learning_rate": 0.00019830170458116903,
|
848 |
+
"loss": 1.4404,
|
849 |
+
"step": 5950
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.17914191024990297,
|
853 |
+
"grad_norm": 4.393162727355957,
|
854 |
+
"learning_rate": 0.00019828741878525022,
|
855 |
+
"loss": 1.4443,
|
856 |
+
"step": 6000
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.1806347595019855,
|
860 |
+
"grad_norm": 3.597520351409912,
|
861 |
+
"learning_rate": 0.00019827313298933136,
|
862 |
+
"loss": 1.4063,
|
863 |
+
"step": 6050
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.18212760875406803,
|
867 |
+
"grad_norm": 3.608085870742798,
|
868 |
+
"learning_rate": 0.00019825884719341255,
|
869 |
+
"loss": 1.3857,
|
870 |
+
"step": 6100
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.18362045800615054,
|
874 |
+
"grad_norm": 3.7055492401123047,
|
875 |
+
"learning_rate": 0.0001982445613974937,
|
876 |
+
"loss": 1.3997,
|
877 |
+
"step": 6150
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.18511330725823305,
|
881 |
+
"grad_norm": 3.875457763671875,
|
882 |
+
"learning_rate": 0.00019823027560157488,
|
883 |
+
"loss": 1.4296,
|
884 |
+
"step": 6200
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.1866061565103156,
|
888 |
+
"grad_norm": 5.074592590332031,
|
889 |
+
"learning_rate": 0.00019821598980565604,
|
890 |
+
"loss": 1.3785,
|
891 |
+
"step": 6250
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.1880990057623981,
|
895 |
+
"grad_norm": 6.013392448425293,
|
896 |
+
"learning_rate": 0.0001982017040097372,
|
897 |
+
"loss": 1.4391,
|
898 |
+
"step": 6300
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.18959185501448064,
|
902 |
+
"grad_norm": 5.679958820343018,
|
903 |
+
"learning_rate": 0.00019818741821381837,
|
904 |
+
"loss": 1.367,
|
905 |
+
"step": 6350
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.19108470426656315,
|
909 |
+
"grad_norm": 3.6182546615600586,
|
910 |
+
"learning_rate": 0.00019817313241789954,
|
911 |
+
"loss": 1.4508,
|
912 |
+
"step": 6400
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.1925775535186457,
|
916 |
+
"grad_norm": 5.209213733673096,
|
917 |
+
"learning_rate": 0.0001981588466219807,
|
918 |
+
"loss": 1.3878,
|
919 |
+
"step": 6450
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.1940704027707282,
|
923 |
+
"grad_norm": 3.0043230056762695,
|
924 |
+
"learning_rate": 0.00019814456082606187,
|
925 |
+
"loss": 1.4248,
|
926 |
+
"step": 6500
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.19556325202281075,
|
930 |
+
"grad_norm": 3.157851219177246,
|
931 |
+
"learning_rate": 0.00019813027503014303,
|
932 |
+
"loss": 1.3725,
|
933 |
+
"step": 6550
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.19705610127489326,
|
937 |
+
"grad_norm": 3.5292418003082275,
|
938 |
+
"learning_rate": 0.0001981159892342242,
|
939 |
+
"loss": 1.3932,
|
940 |
+
"step": 6600
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.1985489505269758,
|
944 |
+
"grad_norm": 3.2819600105285645,
|
945 |
+
"learning_rate": 0.00019810170343830536,
|
946 |
+
"loss": 1.3495,
|
947 |
+
"step": 6650
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.2000417997790583,
|
951 |
+
"grad_norm": 3.0243399143218994,
|
952 |
+
"learning_rate": 0.00019808741764238655,
|
953 |
+
"loss": 1.3689,
|
954 |
+
"step": 6700
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.20153464903114082,
|
958 |
+
"grad_norm": 3.4495368003845215,
|
959 |
+
"learning_rate": 0.0001980731318464677,
|
960 |
+
"loss": 1.3725,
|
961 |
+
"step": 6750
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.20302749828322336,
|
965 |
+
"grad_norm": 3.538259744644165,
|
966 |
+
"learning_rate": 0.00019805884605054888,
|
967 |
+
"loss": 1.3905,
|
968 |
+
"step": 6800
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.20452034753530587,
|
972 |
+
"grad_norm": 4.162181377410889,
|
973 |
+
"learning_rate": 0.00019804456025463002,
|
974 |
+
"loss": 1.4129,
|
975 |
+
"step": 6850
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.20601319678738841,
|
979 |
+
"grad_norm": 4.592432022094727,
|
980 |
+
"learning_rate": 0.0001980302744587112,
|
981 |
+
"loss": 1.3634,
|
982 |
+
"step": 6900
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.20750604603947093,
|
986 |
+
"grad_norm": 3.45967960357666,
|
987 |
+
"learning_rate": 0.00019801598866279237,
|
988 |
+
"loss": 1.416,
|
989 |
+
"step": 6950
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.20899889529155347,
|
993 |
+
"grad_norm": 4.221930503845215,
|
994 |
+
"learning_rate": 0.00019800170286687354,
|
995 |
+
"loss": 1.4051,
|
996 |
+
"step": 7000
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.21049174454363598,
|
1000 |
+
"grad_norm": 4.144239902496338,
|
1001 |
+
"learning_rate": 0.0001979874170709547,
|
1002 |
+
"loss": 1.4219,
|
1003 |
+
"step": 7050
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.21198459379571852,
|
1007 |
+
"grad_norm": 4.7492570877075195,
|
1008 |
+
"learning_rate": 0.00019797313127503587,
|
1009 |
+
"loss": 1.4028,
|
1010 |
+
"step": 7100
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.21347744304780103,
|
1014 |
+
"grad_norm": 3.5841355323791504,
|
1015 |
+
"learning_rate": 0.00019795884547911703,
|
1016 |
+
"loss": 1.4361,
|
1017 |
+
"step": 7150
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.21497029229988357,
|
1021 |
+
"grad_norm": 4.662593364715576,
|
1022 |
+
"learning_rate": 0.0001979445596831982,
|
1023 |
+
"loss": 1.3816,
|
1024 |
+
"step": 7200
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.21646314155196608,
|
1028 |
+
"grad_norm": 4.700701713562012,
|
1029 |
+
"learning_rate": 0.00019793027388727936,
|
1030 |
+
"loss": 1.4226,
|
1031 |
+
"step": 7250
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.2179559908040486,
|
1035 |
+
"grad_norm": 4.025181293487549,
|
1036 |
+
"learning_rate": 0.00019791598809136053,
|
1037 |
+
"loss": 1.4291,
|
1038 |
+
"step": 7300
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.21944884005613113,
|
1042 |
+
"grad_norm": 3.064573049545288,
|
1043 |
+
"learning_rate": 0.0001979017022954417,
|
1044 |
+
"loss": 1.4293,
|
1045 |
+
"step": 7350
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.22094168930821365,
|
1049 |
+
"grad_norm": 6.342152118682861,
|
1050 |
+
"learning_rate": 0.00019788741649952288,
|
1051 |
+
"loss": 1.4173,
|
1052 |
+
"step": 7400
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.22243453856029619,
|
1056 |
+
"grad_norm": 5.89996337890625,
|
1057 |
+
"learning_rate": 0.00019787313070360402,
|
1058 |
+
"loss": 1.396,
|
1059 |
+
"step": 7450
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.2239273878123787,
|
1063 |
+
"grad_norm": 4.462945938110352,
|
1064 |
+
"learning_rate": 0.0001978588449076852,
|
1065 |
+
"loss": 1.3868,
|
1066 |
+
"step": 7500
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.22542023706446124,
|
1070 |
+
"grad_norm": 3.6449055671691895,
|
1071 |
+
"learning_rate": 0.00019784455911176635,
|
1072 |
+
"loss": 1.396,
|
1073 |
+
"step": 7550
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.22691308631654375,
|
1077 |
+
"grad_norm": 4.674243927001953,
|
1078 |
+
"learning_rate": 0.00019783027331584754,
|
1079 |
+
"loss": 1.395,
|
1080 |
+
"step": 7600
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.2284059355686263,
|
1084 |
+
"grad_norm": 3.6160385608673096,
|
1085 |
+
"learning_rate": 0.00019781598751992868,
|
1086 |
+
"loss": 1.3918,
|
1087 |
+
"step": 7650
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.2298987848207088,
|
1091 |
+
"grad_norm": 4.326193332672119,
|
1092 |
+
"learning_rate": 0.00019780170172400987,
|
1093 |
+
"loss": 1.3947,
|
1094 |
+
"step": 7700
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.23139163407279134,
|
1098 |
+
"grad_norm": 5.4003777503967285,
|
1099 |
+
"learning_rate": 0.00019778741592809104,
|
1100 |
+
"loss": 1.344,
|
1101 |
+
"step": 7750
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.23288448332487385,
|
1105 |
+
"grad_norm": 4.711580753326416,
|
1106 |
+
"learning_rate": 0.0001977731301321722,
|
1107 |
+
"loss": 1.3959,
|
1108 |
+
"step": 7800
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.23437733257695637,
|
1112 |
+
"grad_norm": 3.4752814769744873,
|
1113 |
+
"learning_rate": 0.00019775884433625337,
|
1114 |
+
"loss": 1.3722,
|
1115 |
+
"step": 7850
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.2358701818290389,
|
1119 |
+
"grad_norm": 4.028527736663818,
|
1120 |
+
"learning_rate": 0.00019774455854033453,
|
1121 |
+
"loss": 1.3683,
|
1122 |
+
"step": 7900
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.23736303108112142,
|
1126 |
+
"grad_norm": 4.094334602355957,
|
1127 |
+
"learning_rate": 0.0001977302727444157,
|
1128 |
+
"loss": 1.3607,
|
1129 |
+
"step": 7950
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.23885588033320396,
|
1133 |
+
"grad_norm": 5.232580661773682,
|
1134 |
+
"learning_rate": 0.00019771598694849686,
|
1135 |
+
"loss": 1.4354,
|
1136 |
+
"step": 8000
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.24034872958528647,
|
1140 |
+
"grad_norm": 4.269852161407471,
|
1141 |
+
"learning_rate": 0.00019770170115257802,
|
1142 |
+
"loss": 1.4372,
|
1143 |
+
"step": 8050
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.241841578837369,
|
1147 |
+
"grad_norm": 3.312541961669922,
|
1148 |
+
"learning_rate": 0.0001976874153566592,
|
1149 |
+
"loss": 1.3826,
|
1150 |
+
"step": 8100
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.24333442808945152,
|
1154 |
+
"grad_norm": 3.8900692462921143,
|
1155 |
+
"learning_rate": 0.00019767312956074035,
|
1156 |
+
"loss": 1.4189,
|
1157 |
+
"step": 8150
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.24482727734153406,
|
1161 |
+
"grad_norm": 3.894512414932251,
|
1162 |
+
"learning_rate": 0.00019765884376482155,
|
1163 |
+
"loss": 1.3365,
|
1164 |
+
"step": 8200
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.24632012659361657,
|
1168 |
+
"grad_norm": 4.644411563873291,
|
1169 |
+
"learning_rate": 0.00019764455796890268,
|
1170 |
+
"loss": 1.4311,
|
1171 |
+
"step": 8250
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.2478129758456991,
|
1175 |
+
"grad_norm": 8.174029350280762,
|
1176 |
+
"learning_rate": 0.00019763027217298387,
|
1177 |
+
"loss": 1.361,
|
1178 |
+
"step": 8300
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.24930582509778162,
|
1182 |
+
"grad_norm": 4.615732192993164,
|
1183 |
+
"learning_rate": 0.000197615986377065,
|
1184 |
+
"loss": 1.4552,
|
1185 |
+
"step": 8350
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.25079867434986414,
|
1189 |
+
"grad_norm": 4.421249866485596,
|
1190 |
+
"learning_rate": 0.0001976017005811462,
|
1191 |
+
"loss": 1.3463,
|
1192 |
+
"step": 8400
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.2522915236019467,
|
1196 |
+
"grad_norm": 2.8386716842651367,
|
1197 |
+
"learning_rate": 0.00019758741478522734,
|
1198 |
+
"loss": 1.348,
|
1199 |
+
"step": 8450
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.2537843728540292,
|
1203 |
+
"grad_norm": 4.3141703605651855,
|
1204 |
+
"learning_rate": 0.0001975731289893085,
|
1205 |
+
"loss": 1.4306,
|
1206 |
+
"step": 8500
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.2552772221061117,
|
1210 |
+
"grad_norm": 3.947331428527832,
|
1211 |
+
"learning_rate": 0.0001975588431933897,
|
1212 |
+
"loss": 1.3823,
|
1213 |
+
"step": 8550
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.25677007135819424,
|
1217 |
+
"grad_norm": 3.2268636226654053,
|
1218 |
+
"learning_rate": 0.00019754455739747084,
|
1219 |
+
"loss": 1.4199,
|
1220 |
+
"step": 8600
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.2582629206102768,
|
1224 |
+
"grad_norm": 4.0353102684021,
|
1225 |
+
"learning_rate": 0.00019753027160155203,
|
1226 |
+
"loss": 1.3927,
|
1227 |
+
"step": 8650
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.2597557698623593,
|
1231 |
+
"grad_norm": 3.490560293197632,
|
1232 |
+
"learning_rate": 0.00019751598580563316,
|
1233 |
+
"loss": 1.401,
|
1234 |
+
"step": 8700
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2612486191144418,
|
1238 |
+
"grad_norm": 5.577207088470459,
|
1239 |
+
"learning_rate": 0.00019750170000971436,
|
1240 |
+
"loss": 1.3586,
|
1241 |
+
"step": 8750
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.26274146836652434,
|
1245 |
+
"grad_norm": 4.168467998504639,
|
1246 |
+
"learning_rate": 0.0001974874142137955,
|
1247 |
+
"loss": 1.3303,
|
1248 |
+
"step": 8800
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.2642343176186069,
|
1252 |
+
"grad_norm": 3.812627077102661,
|
1253 |
+
"learning_rate": 0.00019747312841787669,
|
1254 |
+
"loss": 1.3717,
|
1255 |
+
"step": 8850
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.2657271668706894,
|
1259 |
+
"grad_norm": 4.875237464904785,
|
1260 |
+
"learning_rate": 0.00019745884262195785,
|
1261 |
+
"loss": 1.3873,
|
1262 |
+
"step": 8900
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.2672200161227719,
|
1266 |
+
"grad_norm": 4.048189163208008,
|
1267 |
+
"learning_rate": 0.00019744455682603902,
|
1268 |
+
"loss": 1.3775,
|
1269 |
+
"step": 8950
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.26871286537485445,
|
1273 |
+
"grad_norm": 3.9090261459350586,
|
1274 |
+
"learning_rate": 0.00019743027103012018,
|
1275 |
+
"loss": 1.4296,
|
1276 |
+
"step": 9000
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.270205714626937,
|
1280 |
+
"grad_norm": 2.8476953506469727,
|
1281 |
+
"learning_rate": 0.00019741598523420134,
|
1282 |
+
"loss": 1.4175,
|
1283 |
+
"step": 9050
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.2716985638790195,
|
1287 |
+
"grad_norm": 5.782102584838867,
|
1288 |
+
"learning_rate": 0.0001974016994382825,
|
1289 |
+
"loss": 1.3835,
|
1290 |
+
"step": 9100
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.273191413131102,
|
1294 |
+
"grad_norm": 4.640264987945557,
|
1295 |
+
"learning_rate": 0.00019738741364236367,
|
1296 |
+
"loss": 1.4524,
|
1297 |
+
"step": 9150
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.27468426238318455,
|
1301 |
+
"grad_norm": 4.81790828704834,
|
1302 |
+
"learning_rate": 0.00019737312784644484,
|
1303 |
+
"loss": 1.3183,
|
1304 |
+
"step": 9200
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.2761771116352671,
|
1308 |
+
"grad_norm": 2.685009717941284,
|
1309 |
+
"learning_rate": 0.000197358842050526,
|
1310 |
+
"loss": 1.3243,
|
1311 |
+
"step": 9250
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.2776699608873496,
|
1315 |
+
"grad_norm": 5.321321487426758,
|
1316 |
+
"learning_rate": 0.00019734455625460717,
|
1317 |
+
"loss": 1.4086,
|
1318 |
+
"step": 9300
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.2791628101394321,
|
1322 |
+
"grad_norm": 3.065791368484497,
|
1323 |
+
"learning_rate": 0.00019733027045868836,
|
1324 |
+
"loss": 1.337,
|
1325 |
+
"step": 9350
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.28065565939151466,
|
1329 |
+
"grad_norm": 4.3569817543029785,
|
1330 |
+
"learning_rate": 0.0001973159846627695,
|
1331 |
+
"loss": 1.4082,
|
1332 |
+
"step": 9400
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.2821485086435972,
|
1336 |
+
"grad_norm": 4.67582368850708,
|
1337 |
+
"learning_rate": 0.0001973016988668507,
|
1338 |
+
"loss": 1.3832,
|
1339 |
+
"step": 9450
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.2836413578956797,
|
1343 |
+
"grad_norm": 4.942144870758057,
|
1344 |
+
"learning_rate": 0.00019728741307093183,
|
1345 |
+
"loss": 1.3734,
|
1346 |
+
"step": 9500
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.2851342071477622,
|
1350 |
+
"grad_norm": 4.853246688842773,
|
1351 |
+
"learning_rate": 0.00019727312727501302,
|
1352 |
+
"loss": 1.4111,
|
1353 |
+
"step": 9550
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.28662705639984476,
|
1357 |
+
"grad_norm": 3.071237325668335,
|
1358 |
+
"learning_rate": 0.00019725884147909418,
|
1359 |
+
"loss": 1.3746,
|
1360 |
+
"step": 9600
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.28811990565192724,
|
1364 |
+
"grad_norm": 4.844615459442139,
|
1365 |
+
"learning_rate": 0.00019724455568317535,
|
1366 |
+
"loss": 1.3051,
|
1367 |
+
"step": 9650
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.2896127549040098,
|
1371 |
+
"grad_norm": 5.954223155975342,
|
1372 |
+
"learning_rate": 0.0001972302698872565,
|
1373 |
+
"loss": 1.4131,
|
1374 |
+
"step": 9700
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.2911056041560923,
|
1378 |
+
"grad_norm": 3.6717801094055176,
|
1379 |
+
"learning_rate": 0.00019721598409133768,
|
1380 |
+
"loss": 1.4166,
|
1381 |
+
"step": 9750
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.29259845340817486,
|
1385 |
+
"grad_norm": 3.6257095336914062,
|
1386 |
+
"learning_rate": 0.00019720169829541884,
|
1387 |
+
"loss": 1.3679,
|
1388 |
+
"step": 9800
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.29409130266025735,
|
1392 |
+
"grad_norm": 4.245635032653809,
|
1393 |
+
"learning_rate": 0.0001971874124995,
|
1394 |
+
"loss": 1.3171,
|
1395 |
+
"step": 9850
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.2955841519123399,
|
1399 |
+
"grad_norm": 5.362602710723877,
|
1400 |
+
"learning_rate": 0.00019717312670358117,
|
1401 |
+
"loss": 1.3932,
|
1402 |
+
"step": 9900
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.2970770011644224,
|
1406 |
+
"grad_norm": 4.6283721923828125,
|
1407 |
+
"learning_rate": 0.00019715884090766234,
|
1408 |
+
"loss": 1.3757,
|
1409 |
+
"step": 9950
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.29856985041650497,
|
1413 |
+
"grad_norm": 4.299574851989746,
|
1414 |
+
"learning_rate": 0.0001971445551117435,
|
1415 |
+
"loss": 1.4018,
|
1416 |
+
"step": 10000
|
1417 |
+
}
|
1418 |
+
],
|
1419 |
+
"logging_steps": 50,
|
1420 |
+
"max_steps": 700001,
|
1421 |
+
"num_input_tokens_seen": 0,
|
1422 |
+
"num_train_epochs": 21,
|
1423 |
+
"save_steps": 10000,
|
1424 |
+
"stateful_callbacks": {
|
1425 |
+
"TrainerControl": {
|
1426 |
+
"args": {
|
1427 |
+
"should_epoch_stop": false,
|
1428 |
+
"should_evaluate": false,
|
1429 |
+
"should_log": false,
|
1430 |
+
"should_save": true,
|
1431 |
+
"should_training_stop": false
|
1432 |
+
},
|
1433 |
+
"attributes": {}
|
1434 |
+
}
|
1435 |
+
},
|
1436 |
+
"total_flos": 2.535695686786089e+17,
|
1437 |
+
"train_batch_size": 2,
|
1438 |
+
"trial_name": null,
|
1439 |
+
"trial_params": null
|
1440 |
+
}
|
last-checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0f04c18880a48291999c17738bf0f62f2b6e23d1307ab6d608fabd8b061c2af
|
3 |
+
size 6968
|
last-checkpoint/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|