PilarAR commited on
Commit
b99c1ee
·
verified ·
1 Parent(s): ddf0d2b

hasta el infinito y mas alla

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 215.90 +/- 81.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7898019b6480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7898019b6520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7898019b65c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7898019b6660>", "_build": "<function ActorCriticPolicy._build at 0x7898019b6700>", "forward": "<function ActorCriticPolicy.forward at 0x7898019b67a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7898019b6840>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7898019b68e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7898019b6980>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7898019b6a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7898019b6ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7898019b6b60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789801ce4d40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738237175683809529, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP2NT17eqS60PnpOu9QvzVVOhc6znUGugAAgD8AAIA/psmmPVwjXrqTZSe4ta1xs/Sf7Llj90I3AACAPwAAgD8zpQE89tRquvAD1DtZ+142ajWoOtZZXjUAAIA/AACAP4DMcz0pXE662uNtOLzjhjOBqQI7FA6MtwAAgD8AAIA/zURBu0hLkLqqrTU6DVAxNX3NsDrlwFK5AACAPwAAgD/NPoU8uKb5ubti4TpHW3u2oz+yulWfebUAAIA/AACAP2ZCwD1SiNa5NGbHu0mGqDafmna7Sd4ctgAAAAAAAIA/ppWnPQrXM7fNwKI7Us/9N2GkujszAsY0AACAPwAAgD9NfTM9w5kguh5yzTZV0TAwg+UsuSpQ67UAAIA/AACAPwAbc71IF6y683eAOY/rdzQf3Dc6EvySuAAAgD8AAIA/5vX+PR8KiDytule+giIwvoi2G721NwK+AAAAAAAAAAAAZ/K8ynqUP/bziTxwxpe+OJ3GvduP+jwAAAAAAAAAAIC0lb1cq3i68YYauv3u5rWyrLu6yMg0OQAAgD8AAIA/ZpZMPVyzTLo95lm7vGleNIw9RroKfoA6AACAPwAAgD/NMZ28XEMjuu7x1biuphy0d/iFOlh0/DcAAIA/AACAP+YUUD2uzaa6cF42O29GnrXDtx463lhRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIlBCMPz4GMAWyUTegDjAF0lEdAmQ3emFaje3V9lChoBkdAYBHHXmNipmgHTegDaAhHQJkX5cZ9/jN1fZQoaAZHQGRyqA8SwnpoB03oA2gIR0CZHCPNmlImdX2UKGgGR0BavD3/Pw/gaAdN6ANoCEdAmR2gYtQKr3V9lChoBkdAYRQIBzV+Z2gHTegDaAhHQJkeBp+MIeJ1fZQoaAZHQGOSwZXMhX9oB03oA2gIR0CZH+LbHp8ndX2UKGgGR0Bj1t/lQuVYaAdN6ANoCEdAmSED59E1EXV9lChoBkdAWs/7O3UhFGgHTegDaAhHQJkiLZbpu/F1fZQoaAZHQGL5on0Cih5oB03oA2gIR0CZPXpzLfUGdX2UKGgGR0BmdxJkGzKLaAdN6ANoCEdAmT45gCwKSnV9lChoBkdAYMUP4mCyyGgHTegDaAhHQJlC5Aqur6t1fZQoaAZHQGU6fgBLf1poB03oA2gIR0CZRN3vhIe6dX2UKGgGR0BsyaZ8a4tpaAdNngFoCEdAmUjAy/KyOnV9lChoBkdAYUcyoGY8dWgHTegDaAhHQJlO3EbYK6Z1fZQoaAZHQFuaawUxmCloB03oA2gIR0CZUf9ytFKDdX2UKGgGR0AmjoX9BKL9aAdNRAFoCEdAmVaOuvECNnV9lChoBkdAYgGu7HyVfWgHTegDaAhHQJlXol4TsY51fZQoaAZHQGI8U1yeZohoB03oA2gIR0CZWCkhRqGldX2UKGgGR0Bk8l7x/d6+aAdN6ANoCEdAmVk7GWD6FnV9lChoBkdAY6kcLjPv8mgHTegDaAhHQJlk00fozN51fZQoaAZHQGR2SeiBXjloB03oA2gIR0CZaJxfv4M4dX2UKGgGR0Bc+Yzi0fHQaAdN6ANoCEdAmWn5Ys/Y8XV9lChoBkdAYyjjfek562gHTegDaAhHQJlsMbyYoiN1fZQoaAZHQGTKRXwLE1loB03oA2gIR0CZbVMKTjebdX2UKGgGR0BlUC/ATIvKaAdN6ANoCEdAmW55OzposnV9lChoBkdAYGWSZjQRgGgHTegDaAhHQJmG9f1Hvtt1fZQoaAZHQGXBAFX7tRhoB03oA2gIR0CZh7dfsu3+dX2UKGgGR0BnUIFFDv3KaAdN6ANoCEdAmYwHrD63zHV9lChoBkdAPwPxlQMx5GgHTSUBaAhHQJmQQOEug6F1fZQoaAZHQGXIvcSGrS5oB03oA2gIR0CZkzjTKDChdX2UKGgGR0Bj8Zxm03OwaAdN6ANoCEdAmZuQfEGZ/nV9lChoBkdAY17sdDIBBGgHTegDaAhHQJme4ug6EJ11fZQoaAZHQG5t2rfcesBoB02HAWgIR0CZoS6QNkOJdX2UKGgGR0BmqejKxLTQaAdN6ANoCEdAmaPKAe7tiXV9lChoBkdAZ2LBF/hESmgHTegDaAhHQJmk5nbqQil1fZQoaAZHQGAHkZBLPD5oB03oA2gIR0CZpXY4ACGOdX2UKGgGR0BkthbbDdgwaAdN6ANoCEdAmaZPe1rqMXV9lChoBkdAZ6a+6iCaqmgHTegDaAhHQJmvf73wkPd1fZQoaAZHQGXyDGkvboNoB03oA2gIR0CZs4nX/YJ3dX2UKGgGR0BdQwtvn8sMaAdN6ANoCEdAmbUC5VfeDXV9lChoBkdAYf+fkmx+rmgHTegDaAhHQJm3ehrWRRx1fZQoaAZHQGZ8WhRIjGFoB03oA2gIR0CZuL5Sm65HdX2UKGgGR0ByWPpIMBp6aAdN2AFoCEdAmbqv5xiobXV9lChoBkdAZPjD7655JWgHTegDaAhHQJnWcTWXkYJ1fZQoaAZHQF/o1uzhP0toB03oA2gIR0CZ3IxesxO+dX2UKGgGR0BeKwIldC3PaAdN6ANoCEdAmeDzNt65XnV9lChoBkdAZK2Yb83uNWgHTegDaAhHQJnjxqIrOJN1fZQoaAZHQEKzAdn003xoB0vjaAhHQJnlyCjDbah1fZQoaAZHQGQM8ry1/lRoB03oA2gIR0CZ6z2OyVv/dX2UKGgGR0BvYTpTuOS4aAdNPAJoCEdAmextm6GxlnV9lChoBkdAXHfzqbBoEmgHTegDaAhHQJnu9zgdfb91fZQoaAZHQGB2RrrPdEdoB03oA2gIR0CZ9GfwqiGndX2UKGgGR0BlTlsrNGExaAdN6ANoCEdAmfWjqv/za3V9lChoBkdAZGpMnJDE32gHTegDaAhHQJn2OUjcEeR1fZQoaAZHQGNfkd3jdYZoB03oA2gIR0CZ9ysYVIqcdX2UKGgGR0BJ0VvMr3CbaAdL7WgIR0CZ+ZcFhXr/dX2UKGgGR0A/GUILPUrkaAdNHwFoCEdAmf4TySV4YHV9lChoBkdAYG+fs/pt8GgHTegDaAhHQJoDCtQsPJ91fZQoaAZHQGKc/bsWweNoB03oA2gIR0CaCAOkLx7RdX2UKGgGR0BjfBpBX0XhaAdN6ANoCEdAmgpHnyNGVnV9lChoBkdAYXnLs8gZCWgHTegDaAhHQJoLXR+jM3Z1fZQoaAZHQGJnSJj2BatoB03oA2gIR0CaDRpTuOS4dX2UKGgGR0BvSFBBzFMqaAdNdgNoCEdAmimG3Sa3JHV9lChoBkdAYEsTcIqsl2gHTegDaAhHQJoqMSFoL5R1fZQoaAZHQGP7n0btJFtoB03oA2gIR0CaLrM2FWXDdX2UKGgGR0BkBvNxEORUaAdN6ANoCEdAmjQMoQWepXV9lChoBkdAWLILZzxPPGgHTegDaAhHQJo9Kw6hg3N1fZQoaAZHQFwyZAIIF/xoB03oA2gIR0CaQoy8jAzpdX2UKGgGR0Blj8qOLiuMaAdN6ANoCEdAmkPOQZGayHV9lChoBkdAY4hUBGQSz2gHTegDaAhHQJpEagg5imV1fZQoaAZHQGcRIrWiDdxoB03oA2gIR0CaRVo24uscdX2UKGgGR0BjfJ3Roh6jaAdN6ANoCEdAmkdkdRzij3V9lChoBkdAbP4dFOO802gHTf8CaAhHQJpJkbiqABl1fZQoaAZHQGKu7961LJ1oB03oA2gIR0CaSsT/ACXAdX2UKGgGR0BcX7TUiILxaAdN6ANoCEdAmk4Io3JgcHV9lChoBkdAPxPMGHHmzWgHTQkBaAhHQJpPvBhx5s11fZQoaAZHQGDI98Rcu8NoB03oA2gIR0CaUo5oXbdrdX2UKGgGR0BmceBFuvU0aAdN6ANoCEdAmlW0Z75VO3V9lChoBkdAZKL7iQ1aXGgHTegDaAhHQJpXZ/e+Eh91fZQoaAZHQHEjdUS7GvRoB00UAmgIR0CadksN2C/XdX2UKGgGR0BjdQmkWRA9aAdN6ANoCEdAmnbFd9lVcXV9lChoBkdAY2V+kP+XJGgHTegDaAhHQJp3ZJK8L8d1fZQoaAZHQHIMo7zTWoZoB01aAWgIR0CaeLjbi6xxdX2UKGgGR0AfxD3M6ij+aAdNFAFoCEdAmno/E4vN/3V9lChoBkdAZYAQmu1WsGgHTegDaAhHQJp6fuSfUWl1fZQoaAZHQGxLWwV0tAdoB02lA2gIR0CaepekYXO4dX2UKGgGR0BinxciW3SbaAdN6ANoCEdAmoRu6mO2iXV9lChoBkdAcQO00FbFCWgHTUMBaAhHQJqGzayrxRV1fZQoaAZHQFxZyuIRAbBoB03oA2gIR0CaipHZK3/hdX2UKGgGR0BkRruhK15TaAdN6ANoCEdAmosqGlANX3V9lChoBkdAW/z4mCyyEGgHTegDaAhHQJqMG8cuJ1t1fZQoaAZHQG3cLG7z06JoB03GAWgIR0CajWekpI+XdX2UKGgGR0BidBUR3/xUaAdN6ANoCEdAmpAW78Nx2nV9lChoBkdAYUqqNp/PPmgHTegDaAhHQJqRPOryUcJ1fZQoaAZHQCFD72tdRixoB00NAWgIR0CalD0Q9RrKdX2UKGgGR0BkbZUT+NtJaAdN6ANoCEdAmpSCfthNNHV9lChoBkdAcerHww0wamgHTRcCaAhHQJqUxhDw6Qx1fZQoaAZHQGGzw9zOopBoB03oA2gIR0CallRmbsnidX2UKGgGR0BgMI+fRNRFaAdN6ANoCEdAmp3NgjQiRnV9lChoBkdAcE7ZGrjo6mgHTVUBaAhHQJqor5uZThp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28dfa2ac6d7dff9049efb82565fde4a88e415cdd8110280e7e5207563e2ae6f1
3
+ size 148132
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7898019b6480>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7898019b6520>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7898019b65c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7898019b6660>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7898019b6700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7898019b67a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7898019b6840>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7898019b68e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7898019b6980>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7898019b6a20>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7898019b6ac0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7898019b6b60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x789801ce4d40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1738237175683809529,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP2NT17eqS60PnpOu9QvzVVOhc6znUGugAAgD8AAIA/psmmPVwjXrqTZSe4ta1xs/Sf7Llj90I3AACAPwAAgD8zpQE89tRquvAD1DtZ+142ajWoOtZZXjUAAIA/AACAP4DMcz0pXE662uNtOLzjhjOBqQI7FA6MtwAAgD8AAIA/zURBu0hLkLqqrTU6DVAxNX3NsDrlwFK5AACAPwAAgD/NPoU8uKb5ubti4TpHW3u2oz+yulWfebUAAIA/AACAP2ZCwD1SiNa5NGbHu0mGqDafmna7Sd4ctgAAAAAAAIA/ppWnPQrXM7fNwKI7Us/9N2GkujszAsY0AACAPwAAgD9NfTM9w5kguh5yzTZV0TAwg+UsuSpQ67UAAIA/AACAPwAbc71IF6y683eAOY/rdzQf3Dc6EvySuAAAgD8AAIA/5vX+PR8KiDytule+giIwvoi2G721NwK+AAAAAAAAAAAAZ/K8ynqUP/bziTxwxpe+OJ3GvduP+jwAAAAAAAAAAIC0lb1cq3i68YYauv3u5rWyrLu6yMg0OQAAgD8AAIA/ZpZMPVyzTLo95lm7vGleNIw9RroKfoA6AACAPwAAgD/NMZ28XEMjuu7x1biuphy0d/iFOlh0/DcAAIA/AACAP+YUUD2uzaa6cF42O29GnrXDtx463lhRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIlBCMPz4GMAWyUTegDjAF0lEdAmQ3emFaje3V9lChoBkdAYBHHXmNipmgHTegDaAhHQJkX5cZ9/jN1fZQoaAZHQGRyqA8SwnpoB03oA2gIR0CZHCPNmlImdX2UKGgGR0BavD3/Pw/gaAdN6ANoCEdAmR2gYtQKr3V9lChoBkdAYRQIBzV+Z2gHTegDaAhHQJkeBp+MIeJ1fZQoaAZHQGOSwZXMhX9oB03oA2gIR0CZH+LbHp8ndX2UKGgGR0Bj1t/lQuVYaAdN6ANoCEdAmSED59E1EXV9lChoBkdAWs/7O3UhFGgHTegDaAhHQJkiLZbpu/F1fZQoaAZHQGL5on0Cih5oB03oA2gIR0CZPXpzLfUGdX2UKGgGR0BmdxJkGzKLaAdN6ANoCEdAmT45gCwKSnV9lChoBkdAYMUP4mCyyGgHTegDaAhHQJlC5Aqur6t1fZQoaAZHQGU6fgBLf1poB03oA2gIR0CZRN3vhIe6dX2UKGgGR0BsyaZ8a4tpaAdNngFoCEdAmUjAy/KyOnV9lChoBkdAYUcyoGY8dWgHTegDaAhHQJlO3EbYK6Z1fZQoaAZHQFuaawUxmCloB03oA2gIR0CZUf9ytFKDdX2UKGgGR0AmjoX9BKL9aAdNRAFoCEdAmVaOuvECNnV9lChoBkdAYgGu7HyVfWgHTegDaAhHQJlXol4TsY51fZQoaAZHQGI8U1yeZohoB03oA2gIR0CZWCkhRqGldX2UKGgGR0Bk8l7x/d6+aAdN6ANoCEdAmVk7GWD6FnV9lChoBkdAY6kcLjPv8mgHTegDaAhHQJlk00fozN51fZQoaAZHQGR2SeiBXjloB03oA2gIR0CZaJxfv4M4dX2UKGgGR0Bc+Yzi0fHQaAdN6ANoCEdAmWn5Ys/Y8XV9lChoBkdAYyjjfek562gHTegDaAhHQJlsMbyYoiN1fZQoaAZHQGTKRXwLE1loB03oA2gIR0CZbVMKTjebdX2UKGgGR0BlUC/ATIvKaAdN6ANoCEdAmW55OzposnV9lChoBkdAYGWSZjQRgGgHTegDaAhHQJmG9f1Hvtt1fZQoaAZHQGXBAFX7tRhoB03oA2gIR0CZh7dfsu3+dX2UKGgGR0BnUIFFDv3KaAdN6ANoCEdAmYwHrD63zHV9lChoBkdAPwPxlQMx5GgHTSUBaAhHQJmQQOEug6F1fZQoaAZHQGXIvcSGrS5oB03oA2gIR0CZkzjTKDChdX2UKGgGR0Bj8Zxm03OwaAdN6ANoCEdAmZuQfEGZ/nV9lChoBkdAY17sdDIBBGgHTegDaAhHQJme4ug6EJ11fZQoaAZHQG5t2rfcesBoB02HAWgIR0CZoS6QNkOJdX2UKGgGR0BmqejKxLTQaAdN6ANoCEdAmaPKAe7tiXV9lChoBkdAZ2LBF/hESmgHTegDaAhHQJmk5nbqQil1fZQoaAZHQGAHkZBLPD5oB03oA2gIR0CZpXY4ACGOdX2UKGgGR0BkthbbDdgwaAdN6ANoCEdAmaZPe1rqMXV9lChoBkdAZ6a+6iCaqmgHTegDaAhHQJmvf73wkPd1fZQoaAZHQGXyDGkvboNoB03oA2gIR0CZs4nX/YJ3dX2UKGgGR0BdQwtvn8sMaAdN6ANoCEdAmbUC5VfeDXV9lChoBkdAYf+fkmx+rmgHTegDaAhHQJm3ehrWRRx1fZQoaAZHQGZ8WhRIjGFoB03oA2gIR0CZuL5Sm65HdX2UKGgGR0ByWPpIMBp6aAdN2AFoCEdAmbqv5xiobXV9lChoBkdAZPjD7655JWgHTegDaAhHQJnWcTWXkYJ1fZQoaAZHQF/o1uzhP0toB03oA2gIR0CZ3IxesxO+dX2UKGgGR0BeKwIldC3PaAdN6ANoCEdAmeDzNt65XnV9lChoBkdAZK2Yb83uNWgHTegDaAhHQJnjxqIrOJN1fZQoaAZHQEKzAdn003xoB0vjaAhHQJnlyCjDbah1fZQoaAZHQGQM8ry1/lRoB03oA2gIR0CZ6z2OyVv/dX2UKGgGR0BvYTpTuOS4aAdNPAJoCEdAmextm6GxlnV9lChoBkdAXHfzqbBoEmgHTegDaAhHQJnu9zgdfb91fZQoaAZHQGB2RrrPdEdoB03oA2gIR0CZ9GfwqiGndX2UKGgGR0BlTlsrNGExaAdN6ANoCEdAmfWjqv/za3V9lChoBkdAZGpMnJDE32gHTegDaAhHQJn2OUjcEeR1fZQoaAZHQGNfkd3jdYZoB03oA2gIR0CZ9ysYVIqcdX2UKGgGR0BJ0VvMr3CbaAdL7WgIR0CZ+ZcFhXr/dX2UKGgGR0A/GUILPUrkaAdNHwFoCEdAmf4TySV4YHV9lChoBkdAYG+fs/pt8GgHTegDaAhHQJoDCtQsPJ91fZQoaAZHQGKc/bsWweNoB03oA2gIR0CaCAOkLx7RdX2UKGgGR0BjfBpBX0XhaAdN6ANoCEdAmgpHnyNGVnV9lChoBkdAYXnLs8gZCWgHTegDaAhHQJoLXR+jM3Z1fZQoaAZHQGJnSJj2BatoB03oA2gIR0CaDRpTuOS4dX2UKGgGR0BvSFBBzFMqaAdNdgNoCEdAmimG3Sa3JHV9lChoBkdAYEsTcIqsl2gHTegDaAhHQJoqMSFoL5R1fZQoaAZHQGP7n0btJFtoB03oA2gIR0CaLrM2FWXDdX2UKGgGR0BkBvNxEORUaAdN6ANoCEdAmjQMoQWepXV9lChoBkdAWLILZzxPPGgHTegDaAhHQJo9Kw6hg3N1fZQoaAZHQFwyZAIIF/xoB03oA2gIR0CaQoy8jAzpdX2UKGgGR0Blj8qOLiuMaAdN6ANoCEdAmkPOQZGayHV9lChoBkdAY4hUBGQSz2gHTegDaAhHQJpEagg5imV1fZQoaAZHQGcRIrWiDdxoB03oA2gIR0CaRVo24uscdX2UKGgGR0BjfJ3Roh6jaAdN6ANoCEdAmkdkdRzij3V9lChoBkdAbP4dFOO802gHTf8CaAhHQJpJkbiqABl1fZQoaAZHQGKu7961LJ1oB03oA2gIR0CaSsT/ACXAdX2UKGgGR0BcX7TUiILxaAdN6ANoCEdAmk4Io3JgcHV9lChoBkdAPxPMGHHmzWgHTQkBaAhHQJpPvBhx5s11fZQoaAZHQGDI98Rcu8NoB03oA2gIR0CaUo5oXbdrdX2UKGgGR0BmceBFuvU0aAdN6ANoCEdAmlW0Z75VO3V9lChoBkdAZKL7iQ1aXGgHTegDaAhHQJpXZ/e+Eh91fZQoaAZHQHEjdUS7GvRoB00UAmgIR0CadksN2C/XdX2UKGgGR0BjdQmkWRA9aAdN6ANoCEdAmnbFd9lVcXV9lChoBkdAY2V+kP+XJGgHTegDaAhHQJp3ZJK8L8d1fZQoaAZHQHIMo7zTWoZoB01aAWgIR0CaeLjbi6xxdX2UKGgGR0AfxD3M6ij+aAdNFAFoCEdAmno/E4vN/3V9lChoBkdAZYAQmu1WsGgHTegDaAhHQJp6fuSfUWl1fZQoaAZHQGxLWwV0tAdoB02lA2gIR0CaepekYXO4dX2UKGgGR0BinxciW3SbaAdN6ANoCEdAmoRu6mO2iXV9lChoBkdAcQO00FbFCWgHTUMBaAhHQJqGzayrxRV1fZQoaAZHQFxZyuIRAbBoB03oA2gIR0CaipHZK3/hdX2UKGgGR0BkRruhK15TaAdN6ANoCEdAmosqGlANX3V9lChoBkdAW/z4mCyyEGgHTegDaAhHQJqMG8cuJ1t1fZQoaAZHQG3cLG7z06JoB03GAWgIR0CajWekpI+XdX2UKGgGR0BidBUR3/xUaAdN6ANoCEdAmpAW78Nx2nV9lChoBkdAYUqqNp/PPmgHTegDaAhHQJqRPOryUcJ1fZQoaAZHQCFD72tdRixoB00NAWgIR0CalD0Q9RrKdX2UKGgGR0BkbZUT+NtJaAdN6ANoCEdAmpSCfthNNHV9lChoBkdAcerHww0wamgHTRcCaAhHQJqUxhDw6Qx1fZQoaAZHQGGzw9zOopBoB03oA2gIR0CallRmbsnidX2UKGgGR0BgMI+fRNRFaAdN6ANoCEdAmp3NgjQiRnV9lChoBkdAcE7ZGrjo6mgHTVUBaAhHQJqor5uZThp1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f910b8e93a1332229cc3f6730f580defa5cea46865003f8a5d6530f806f85289
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dc2eb474ef8b01b5bdc331ff8828d30747fdb98a5e205e4ca4c1fa1a48d94ec
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.11.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 215.9038418, "std_reward": 81.18552251432075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-30T12:48:36.966990"}