PideyZ commited on
Commit
6667f52
·
verified ·
1 Parent(s): fdcec8f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.57 +/- 14.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d736381d090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d736381d120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d736381d1b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d736381d240>", "_build": "<function ActorCriticPolicy._build at 0x7d736381d2d0>", "forward": "<function ActorCriticPolicy.forward at 0x7d736381d360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d736381d3f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d736381d480>", "_predict": "<function ActorCriticPolicy._predict at 0x7d736381d510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d736381d5a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d736381d630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d736381d6c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d7308269200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731857898665722087, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOnFL3cTFA/Y9H/PLQSpr5N8KK91okEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBCv0RODaqMAWyUTWQBjAF0lEdAnEdpoXbdrXV9lChoBkdAcEFw6ySmqGgHTW8BaAhHQJxKkX1rZap1fZQoaAZHQHFKJGax5cFoB01bAWgIR0CcTG5BkZrIdX2UKGgGR0BufR5Z8rqdaAdNWQFoCEdAnE5atxMnJHV9lChoBkdAcX1bGm1pkGgHTUEBaAhHQJxRwWN3np11fZQoaAZHQG8O+KTB68hoB02NAWgIR0CcVGj2Bas7dX2UKGgGR0BuB5eiSJTEaAdNZgFoCEdAnFcxCpm29nV9lChoBkdAbgtJHRTjvWgHTVMBaAhHQJxbXteD3/R1fZQoaAZHQHDMCjQAuI1oB01PAWgIR0CcXSpobn5jdX2UKGgGR0Bvz6+Yc/+saAdNgwFoCEdAnF9Q4sEq2HV9lChoBkdAb9OJ1JUYK2gHTZoBaAhHQJxiufkFOfx1fZQoaAZHQHIZjV6NVBFoB01IAWgIR0CcZH9ZRsMzdX2UKGgGR0BxqmpzcRDkaAdNQAFoCEdAnGZCQxN7B3V9lChoBkdAcFiXY150KmgHTXEBaAhHQJxpdQ9A5aN1fZQoaAZHQHAlbhrFfiRoB02FAWgIR0Cca5e18b71dX2UKGgGR0BxLJpxm03PaAdNpQFoCEdAnG8bJ0W/J3V9lChoBkdAcKnHJ9y93GgHTXkBaAhHQJxxKuRs/IN1fZQoaAZHQGp+1KwpvxZoB01ZAWgIR0CccxPCEYfodX2UKGgGR0BFMk+xGDtgaAdL5GgIR0CcdEQb+98JdX2UKGgGR0Buwd/tpmEoaAdNegFoCEdAnHd0KzAvc3V9lChoBkdAcFgJng5zYGgHTYUBaAhHQJx5jsQd0aJ1fZQoaAZHQG/lVUdaMaVoB02jAWgIR0CcfRMAWBSUdX2UKGgGR0Btwm2uxKQJaAdNiAFoCEdAnH85hfBvaXV9lChoBkdAcQqGIbfgrGgHTecBaAhHQJyB1glWwNd1fZQoaAZHQGsBlz2exwBoB01SAWgIR0CchXm2b5M2dX2UKGgGR0BtjCouPFNtaAdNlAFoCEdAnIhKgElme3V9lChoBkdAcLe5Qgs9S2gHTYcBaAhHQJyNAYk3S8d1fZQoaAZHQG9q30wrUb1oB03TAWgIR0Ccj48xKxs3dX2UKGgGR0BvUzyxzJZGaAdNMwFoCEdAnJEy8zyjHnV9lChoBkdAcKZIgvDgqGgHTWkBaAhHQJyUYSHuZ1F1fZQoaAZHQGzu4Dklu3toB03mAWgIR0CclxK2KEWZdX2UKGgGR0BpIkhq0tyxaAdNkQFoCEdAnJpfBBRht3V9lChoBkdAcNYcFQl8gWgHTVYBaAhHQJycQFW4mTl1fZQoaAZHQG9DjUVi4KBoB011AWgIR0CcnkPWxyGSdX2UKGgGR0BwOFvLowEhaAdNkQFoCEdAnKGYNEw353V9lChoBkdAQ9cguAZsK2gHS+poCEdAnKLdH2AXmHV9lChoBkdAbdiI4VARkGgHTXEBaAhHQJyk2seXAuZ1fZQoaAZHQHHz+W8h9stoB029AWgIR0CcqHF9roGIdX2UKGgGR0ByCIRK6FufaAdNngFoCEdAnKq/vF3pwHV9lChoBkdAcOvpwCKaX2gHTUYBaAhHQJysj668QI51fZQoaAZHQG2ze7tiQT5oB01iAWgIR0Ccr7Nke6qbdX2UKGgGR0Bu+Ryn1nM/aAdNVQFoCEdAnLGHs5XEInV9lChoBkdAb5KPbO/tY2gHTXwBaAhHQJyzpS4vvjR1fZQoaAZHQG4fILPUrkNoB005AWgIR0CctwSr5qM4dX2UKGgGR0BrZMpd8iOeaAdNVwFoCEdAnLlXUUfxMHV9lChoBkdAcBg9LYf4h2gHTdEBaAhHQJy+jXPJJXh1fZQoaAZHQG6mHoX9BKNoB01IAWgIR0CcwH81n/T9dX2UKGgGR0BwN1Pacqe9aAdNMgFoCEdAnMIlsguAZ3V9lChoBkdAcPflYU34sWgHTVoBaAhHQJzEBDv3JxN1fZQoaAZHQHH2Sb+cYqJoB01pAWgIR0CcxyfFrEcbdX2UKGgGR0BsFZJmNBGAaAdNlQFoCEdAnMlc2aUiZHV9lChoBkdAbqIYLLIPsmgHTZ4BaAhHQJzMwlTm4iJ1fZQoaAZHQGuaaBRQ791oB02iAWgIR0Cczw06o2n9dX2UKGgGR0BwXAEKVpsXaAdNUAFoCEdAnNDfqxC6YnV9lChoBkdAToIoG6f8M2gHS9xoCEdAnNM6CUX533V9lChoBkdASjTELpiZv2gHS+JoCEdAnNRvrOZ9eHV9lChoBkdAcUF2USqU/2gHTUcBaAhHQJzWPmfXf651fZQoaAZHQHC8ot6HCXRoB018AWgIR0Cc2EfD1oQGdX2UKGgGR0Bw+vwNLDhtaAdNHgFoCEdAnNsDbnHNo3V9lChoBkdAcgXNet0V8GgHTUUBaAhHQJzcxwqAjIJ1fZQoaAZHQHDhlRxcVxloB02XAWgIR0Cc3wGD+R5kdX2UKGgGR0BwCTyLAHmjaAdNWQFoCEdAnOIQ/gR9PXV9lChoBkdAb29tAs052mgHTWYBaAhHQJzkAbOu7pV1fZQoaAZHQHGv8ByS3b5oB01oAWgIR0Cc51DeTFERdX2UKGgGR0BvR4R5C4SZaAdNTAFoCEdAnOmy2tuDSXV9lChoBkdAavLQP7N0NmgHTUYBaAhHQJzr8te2NNt1fZQoaAZHQEz9JSR8twtoB0vRaAhHQJztkCeVcD91fZQoaAZHQHHv0DQqqfhoB00GAWgIR0Cc8TLP2PDHdX2UKGgGR0BwNTqTr3TNaAdNOQFoCEdAnPMNkOI683V9lChoBkdAcYDudf9gnmgHTUcBaAhHQJz0zkmx+rl1fZQoaAZHwBqf6fra/RFoB0v7aAhHQJz2MO/cnE51fZQoaAZHQHEqW7nPmgdoB00sAWgIR0Cc+QSRKYiQdX2UKGgGR0Bvaa619fCzaAdNuQFoCEdAnPt15WzWw3V9lChoBkdAUILIJZ4fOmgHTQIBaAhHQJz81qSHM2Z1fZQoaAZHQG2/GAskIHFoB008AWgIR0Cc/75rxiG4dX2UKGgGR0BsIq5TZQHiaAdNeAFoCEdAnQHMOby6MHV9lChoBkdAblKSvC/Gl2gHTUsBaAhHQJ0Dud4FA3V1fZQoaAZHQHBZz2Jzkp9oB021AWgIR0CdB08QI2OydX2UKGgGR0BycABmwqy4aAdNGwFoCEdAnQjQbEP1+XV9lChoBkdAcMR4yXUpeGgHTWIBaAhHQJ0L5jpcHGF1fZQoaAZHQHImGEwnH/9oB00yAWgIR0CdDaJAdGRWdX2UKGgGR0BwnS13MY/FaAdNaAFoCEdAnQ+aa9bosHV9lChoBkdAcbMpbUwztWgHTWQBaAhHQJ0SsyoGY8d1fZQoaAZHQHCoGNNrTH9oB01aAWgIR0CdFJuf29L6dX2UKGgGR0BwfIC9ytFKaAdNdAFoCEdAnRa6h11W83V9lChoBkdATL7+DOC5E2gHTQ8BaAhHQJ0YKsXBP9F1fZQoaAZHQG+MIXj2i+NoB01DAWgIR0CdG5C3PRiPdX2UKGgGR0Bk4uAiFCb+aAdN6ANoCEdAnSQ4I8hcJXV9lChoBkdAcM3RzRx95WgHTQkCaAhHQJ0nCcriEQJ1fZQoaAZHQHBqaYE4ecRoB01bAWgIR0CdKhScLBsRdX2UKGgGR0BhpBfOUt7KaAdN6ANoCEdAnTDIE0SAY3V9lChoBkdAcGfhA4XGfmgHTS4BaAhHQJ0yc9KVY6p1fZQoaAZHQG9IgO8TSLJoB03CAWgIR0CdNPPnjhkzdX2UKGgGR0BFjJw0fozOaAdNGwFoCEdAnTe4AGSpznV9lChoBkdAcEk5Dqnm72gHTUMBaAhHQJ05eVHFxXJ1fZQoaAZHQG5N0ihWYF9oB01DAWgIR0CdOzfCQ9zPdX2UKGgGR0BwZFrDZUT+aAdNQAFoCEdAnT4kx7AtWnV9lChoBkdAb0DFpfx+a2gHTWoBaAhHQJ1AK1gH/tJ1fZQoaAZHQFBEJPqLS/loB00JAWgIR0CdQZc2zfJndX2UKGgGR0A/8gBcRlH0aAdNBQFoCEdAnUL9XgccVHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3912, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRRPivMwA7TGJbL2Cxu5HvlgCMA2luY5SKEIsG+rXZBgftlHsFA0ovVQd1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRx2t0EI9VpyIEdTV5KQbG5QCMA2luY5SKEdXjnKouR2uWWF15I1bkeIAAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigU006mwAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:500eec8f01a53f36c1709cb07f3ae72ddb3e8c81695360036a784e11b8300a91
3
+ size 147914
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d736381d090>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d736381d120>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d736381d1b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d736381d240>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d736381d2d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d736381d360>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d736381d3f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d736381d480>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d736381d510>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d736381d5a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d736381d630>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d736381d6c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d7308269200>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1731857898665722087,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOnFL3cTFA/Y9H/PLQSpr5N8KK91okEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBCv0RODaqMAWyUTWQBjAF0lEdAnEdpoXbdrXV9lChoBkdAcEFw6ySmqGgHTW8BaAhHQJxKkX1rZap1fZQoaAZHQHFKJGax5cFoB01bAWgIR0CcTG5BkZrIdX2UKGgGR0BufR5Z8rqdaAdNWQFoCEdAnE5atxMnJHV9lChoBkdAcX1bGm1pkGgHTUEBaAhHQJxRwWN3np11fZQoaAZHQG8O+KTB68hoB02NAWgIR0CcVGj2Bas7dX2UKGgGR0BuB5eiSJTEaAdNZgFoCEdAnFcxCpm29nV9lChoBkdAbgtJHRTjvWgHTVMBaAhHQJxbXteD3/R1fZQoaAZHQHDMCjQAuI1oB01PAWgIR0CcXSpobn5jdX2UKGgGR0Bvz6+Yc/+saAdNgwFoCEdAnF9Q4sEq2HV9lChoBkdAb9OJ1JUYK2gHTZoBaAhHQJxiufkFOfx1fZQoaAZHQHIZjV6NVBFoB01IAWgIR0CcZH9ZRsMzdX2UKGgGR0BxqmpzcRDkaAdNQAFoCEdAnGZCQxN7B3V9lChoBkdAcFiXY150KmgHTXEBaAhHQJxpdQ9A5aN1fZQoaAZHQHAlbhrFfiRoB02FAWgIR0Cca5e18b71dX2UKGgGR0BxLJpxm03PaAdNpQFoCEdAnG8bJ0W/J3V9lChoBkdAcKnHJ9y93GgHTXkBaAhHQJxxKuRs/IN1fZQoaAZHQGp+1KwpvxZoB01ZAWgIR0CccxPCEYfodX2UKGgGR0BFMk+xGDtgaAdL5GgIR0CcdEQb+98JdX2UKGgGR0Buwd/tpmEoaAdNegFoCEdAnHd0KzAvc3V9lChoBkdAcFgJng5zYGgHTYUBaAhHQJx5jsQd0aJ1fZQoaAZHQG/lVUdaMaVoB02jAWgIR0CcfRMAWBSUdX2UKGgGR0Btwm2uxKQJaAdNiAFoCEdAnH85hfBvaXV9lChoBkdAcQqGIbfgrGgHTecBaAhHQJyB1glWwNd1fZQoaAZHQGsBlz2exwBoB01SAWgIR0CchXm2b5M2dX2UKGgGR0BtjCouPFNtaAdNlAFoCEdAnIhKgElme3V9lChoBkdAcLe5Qgs9S2gHTYcBaAhHQJyNAYk3S8d1fZQoaAZHQG9q30wrUb1oB03TAWgIR0Ccj48xKxs3dX2UKGgGR0BvUzyxzJZGaAdNMwFoCEdAnJEy8zyjHnV9lChoBkdAcKZIgvDgqGgHTWkBaAhHQJyUYSHuZ1F1fZQoaAZHQGzu4Dklu3toB03mAWgIR0CclxK2KEWZdX2UKGgGR0BpIkhq0tyxaAdNkQFoCEdAnJpfBBRht3V9lChoBkdAcNYcFQl8gWgHTVYBaAhHQJycQFW4mTl1fZQoaAZHQG9DjUVi4KBoB011AWgIR0CcnkPWxyGSdX2UKGgGR0BwOFvLowEhaAdNkQFoCEdAnKGYNEw353V9lChoBkdAQ9cguAZsK2gHS+poCEdAnKLdH2AXmHV9lChoBkdAbdiI4VARkGgHTXEBaAhHQJyk2seXAuZ1fZQoaAZHQHHz+W8h9stoB029AWgIR0CcqHF9roGIdX2UKGgGR0ByCIRK6FufaAdNngFoCEdAnKq/vF3pwHV9lChoBkdAcOvpwCKaX2gHTUYBaAhHQJysj668QI51fZQoaAZHQG2ze7tiQT5oB01iAWgIR0Ccr7Nke6qbdX2UKGgGR0Bu+Ryn1nM/aAdNVQFoCEdAnLGHs5XEInV9lChoBkdAb5KPbO/tY2gHTXwBaAhHQJyzpS4vvjR1fZQoaAZHQG4fILPUrkNoB005AWgIR0CctwSr5qM4dX2UKGgGR0BrZMpd8iOeaAdNVwFoCEdAnLlXUUfxMHV9lChoBkdAcBg9LYf4h2gHTdEBaAhHQJy+jXPJJXh1fZQoaAZHQG6mHoX9BKNoB01IAWgIR0CcwH81n/T9dX2UKGgGR0BwN1Pacqe9aAdNMgFoCEdAnMIlsguAZ3V9lChoBkdAcPflYU34sWgHTVoBaAhHQJzEBDv3JxN1fZQoaAZHQHH2Sb+cYqJoB01pAWgIR0CcxyfFrEcbdX2UKGgGR0BsFZJmNBGAaAdNlQFoCEdAnMlc2aUiZHV9lChoBkdAbqIYLLIPsmgHTZ4BaAhHQJzMwlTm4iJ1fZQoaAZHQGuaaBRQ791oB02iAWgIR0Cczw06o2n9dX2UKGgGR0BwXAEKVpsXaAdNUAFoCEdAnNDfqxC6YnV9lChoBkdAToIoG6f8M2gHS9xoCEdAnNM6CUX533V9lChoBkdASjTELpiZv2gHS+JoCEdAnNRvrOZ9eHV9lChoBkdAcUF2USqU/2gHTUcBaAhHQJzWPmfXf651fZQoaAZHQHC8ot6HCXRoB018AWgIR0Cc2EfD1oQGdX2UKGgGR0Bw+vwNLDhtaAdNHgFoCEdAnNsDbnHNo3V9lChoBkdAcgXNet0V8GgHTUUBaAhHQJzcxwqAjIJ1fZQoaAZHQHDhlRxcVxloB02XAWgIR0Cc3wGD+R5kdX2UKGgGR0BwCTyLAHmjaAdNWQFoCEdAnOIQ/gR9PXV9lChoBkdAb29tAs052mgHTWYBaAhHQJzkAbOu7pV1fZQoaAZHQHGv8ByS3b5oB01oAWgIR0Cc51DeTFERdX2UKGgGR0BvR4R5C4SZaAdNTAFoCEdAnOmy2tuDSXV9lChoBkdAavLQP7N0NmgHTUYBaAhHQJzr8te2NNt1fZQoaAZHQEz9JSR8twtoB0vRaAhHQJztkCeVcD91fZQoaAZHQHHv0DQqqfhoB00GAWgIR0Cc8TLP2PDHdX2UKGgGR0BwNTqTr3TNaAdNOQFoCEdAnPMNkOI683V9lChoBkdAcYDudf9gnmgHTUcBaAhHQJz0zkmx+rl1fZQoaAZHwBqf6fra/RFoB0v7aAhHQJz2MO/cnE51fZQoaAZHQHEqW7nPmgdoB00sAWgIR0Cc+QSRKYiQdX2UKGgGR0Bvaa619fCzaAdNuQFoCEdAnPt15WzWw3V9lChoBkdAUILIJZ4fOmgHTQIBaAhHQJz81qSHM2Z1fZQoaAZHQG2/GAskIHFoB008AWgIR0Cc/75rxiG4dX2UKGgGR0BsIq5TZQHiaAdNeAFoCEdAnQHMOby6MHV9lChoBkdAblKSvC/Gl2gHTUsBaAhHQJ0Dud4FA3V1fZQoaAZHQHBZz2Jzkp9oB021AWgIR0CdB08QI2OydX2UKGgGR0BycABmwqy4aAdNGwFoCEdAnQjQbEP1+XV9lChoBkdAcMR4yXUpeGgHTWIBaAhHQJ0L5jpcHGF1fZQoaAZHQHImGEwnH/9oB00yAWgIR0CdDaJAdGRWdX2UKGgGR0BwnS13MY/FaAdNaAFoCEdAnQ+aa9bosHV9lChoBkdAcbMpbUwztWgHTWQBaAhHQJ0SsyoGY8d1fZQoaAZHQHCoGNNrTH9oB01aAWgIR0CdFJuf29L6dX2UKGgGR0BwfIC9ytFKaAdNdAFoCEdAnRa6h11W83V9lChoBkdATL7+DOC5E2gHTQ8BaAhHQJ0YKsXBP9F1fZQoaAZHQG+MIXj2i+NoB01DAWgIR0CdG5C3PRiPdX2UKGgGR0Bk4uAiFCb+aAdN6ANoCEdAnSQ4I8hcJXV9lChoBkdAcM3RzRx95WgHTQkCaAhHQJ0nCcriEQJ1fZQoaAZHQHBqaYE4ecRoB01bAWgIR0CdKhScLBsRdX2UKGgGR0BhpBfOUt7KaAdN6ANoCEdAnTDIE0SAY3V9lChoBkdAcGfhA4XGfmgHTS4BaAhHQJ0yc9KVY6p1fZQoaAZHQG9IgO8TSLJoB03CAWgIR0CdNPPnjhkzdX2UKGgGR0BFjJw0fozOaAdNGwFoCEdAnTe4AGSpznV9lChoBkdAcEk5Dqnm72gHTUMBaAhHQJ05eVHFxXJ1fZQoaAZHQG5N0ihWYF9oB01DAWgIR0CdOzfCQ9zPdX2UKGgGR0BwZFrDZUT+aAdNQAFoCEdAnT4kx7AtWnV9lChoBkdAb0DFpfx+a2gHTWoBaAhHQJ1AK1gH/tJ1fZQoaAZHQFBEJPqLS/loB00JAWgIR0CdQZc2zfJndX2UKGgGR0A/8gBcRlH0aAdNBQFoCEdAnUL9XgccVHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3912,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRRPivMwA7TGJbL2Cxu5HvlgCMA2luY5SKEIsG+rXZBgftlHsFA0ovVQd1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": "Generator(PCG64)"
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRx2t0EI9VpyIEdTV5KQbG5QCMA2luY5SKEdXjnKouR2uWWF15I1bkeIAAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigU006mwAHVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2dff03976e6db2d4582bfb76baae3e43b61d12430eec77d504dd61afbf26b0b
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f133bef479149b6098ddabf5290ab5c3a70f7fc8ab13d34eeb182701b93e4ca
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (168 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.5711183204201, "std_reward": 14.311719283213785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-17T16:46:19.587838"}